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ABSTRACT

In this thesis, the calculation of the electric dipole

polarizability tensor of the He2 dimer is described, and the results

are used in the computation of several dielectric and optical

properties of helium gas, at both high (322 0 K) and low (4'K)

temperatures. The properties considered are the second dielectric

virial coefficient, the second Kerr virial coefficient, and the

depolarization ratio of the integrated intensities for the Raman

scattering experiments.

The thesis consists of five parts. In the first part, the

polarizability and various properties are defined. In the second

part, the calculation of the polarizability in the long-range region

in terms of a quantum mechanical multipole expansion is described.

The formulas which are obtained are applied to the H2 , He2 , and HeH

diatomics, and the results are compared to those of model

calculations. In the third part, the calculation of the He2

*
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polarizability in the overlap region via coupled Hartree-Fock

perturbation theory is described, and a basis set selection

procedure is delineated which allows the Hartree-Fock limit to be

approached with sets of reasonable size. It is further shown that

the long-range limit of the coupled Hartree-Fock polarizability is

identical to that of the point dipole model. The calculation of the

quantum pair distribution function for both the 3He and 4He isotopes

at 4°K is discussed in the fourth part. The calculated values of

the properties of helium gas are given in the fifth part. The order

of the computed second dielectric virial coefficients for 3He and

4He at 4'K is found to be opposite to that of experiment. This

experimental-computational discrepancy is discussed in detail; while

there is an uncertainty in the computed results due to the neglect

of electron correlation, it is concluded that the discrepancy is

probably due to inaccuracies in the experiments.
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CHAPTER I

INTRODUCTION

A. Motivation

"We are perhaps not far removed from the time when we
shall be able to submit the bulk of chemical phenomena
to calculation." (J. L. Gay-Lussac, Memoires de la
Societe' d'Archeil, 2, 207 (1808).)

"It is also a good rule not to put overmuch confidence
in the observational results that are put forward until
they have been confirmed by theory." (A. Eddington in
The Coming of the Golden Age by G. S. Stent.)

There is a well established paradigm for computing the macroscopic

properties of the rare gases. The first step in the calculation involves

treating the electronic structure of the constituent atoms or molecuLles

of the gas via quantum mechanics. The link between the molecular

properties and experiment is provided by statistical mechanics. The need

for either classical or quantum statistical procedures is dictated by the

parameters of the particular experiment which one is attempting to

describe; low temperature experiments on light atoms, for example,

necessitate the inclusion of quantum statistical effects. Then, since

statistical formulas which relate experimentially observable quantities to

the properties of the molecular system are available, one can, at least

in principle, obtain results for the macroscopic system using a

completely computational procedure.
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In this light, experiments are an alternative to computation.

While the approach actually taken in a given case is largely determined

by convenience, the computational scheme can result in a more detailed

understanding of the nature of the physical interactions which give

rise to the phenomenon under investigation.

In the work which is reported in this thesis, we adopt the

computational approach, and calculate a number of dielectric and

optical properties of gaseous helium.

The quantities in which we are interested are: the pressure

dependence of the dielectric constant;1 the static electric-field-

induced birefringence (Kerr effect);2 and the collision induced Raman

spectrum. 3 The experimental results, as well as the theory, are
formulated in terms of virial expansions in powers of the density. We

have considered the terms which are linear in the density and arise
from interactions involving pairs of helium atoms. The calculation

of each of these properties involves both the electric polarizability

tensor (quantum mechanics) and the quantum radial distribution function
for helium (statistical mechanics). The corresponding properties for
various systems in addition to helium, including other rare gases,
have been experimentally studied by other workers. We, however,

restricted our work to helium because it is the only system which

currently may be treated accurately using a completely non-empirical

approach.
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There are several reasons for undertaking this study, not the

least of which is the fact that the purely computational procedure has

never before been carried to completion (for helium) for a property

which requires the accurate calculation of both a molecular property

(other than the energy) and the quantum distribution function. Even

for the relatively simple case of helium, approximations are made in

both the quantum mechanical and statistical mechanical parts of the

computation. While it is not our intent to question the general

approach, we wish to examine the sensitivity of the experimental

properties to these approximations, and to assess the interpretation

of the experimental data in terms of molecular properties. One hopes

that a critical comparison of experimental and computed results would

either verify the utility of a given set of approximations or indicate

the direction in which one should move in order to improve the

approximations.

Most of our work concentrates on calculating how the polarizability

of a pair of helium atoms changes as a function of internuclear

separation. For collisions at thermal energies, these changes probably

amount to no more than a few percent of the sum of the polarizabilities

of the isolated helium atoms. Nevertheless, these changes give rise to

the observable effects mentioned above. The accurate calculation of

these changes is a difficult computational problem.

Quantum mechanical calculations of molecular polarizabilities

have had a long history, dating from Schrodinger's second paper wherein
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the polarizability of the hydrogen atom was obtained. 4 For more

complicated systems than this, however, polarizability calculations

are far from routine. Although semi-empirical methods have been

developed which are capable of giving good upper and lower bounds to

the exact polarizability, 5 most non-empirical calculations are for

atoms, or molecules at fixed geometry, and are at the level of the

independent particle (Hartree-Fock) model. Only recently have atomic

polarizability calculations, for systems other than helium, been

reported in which electron correlation is taken into account.6 For

atomic helium itself, the calculations of Buckingham and Hibbard have

yielded the polarizability to six significant figures.7 For molecules,

only the fully correlated calculations of Kolos and Wolniewicz on H2

can be considered definitive.8

To anticipate the pattern of our calculation of the helium pair

polarizability, it is useful to briefly recall the history of

calculations of the pair potential. It has been known since Lennard-

Jones'successful fit of equation of state and transport data 9 that

the helium pair potential is characterized by long range attraction

and short range repulsion, resulting in a shallow van der Waals well

at intermediate separations. Until recently, there were two separate

computational approaches to explain this behavior: the multipole

expansion of the potential at large internuclear separations and the

Hartree-Fock approximation at shorter separations. The two approaches

make different assumptions: the former assumes that the overlap
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between the atomic wavefunctions is negligible and treats the

interatomic correlation which gives rise to the attractive multipole

interactions; the latter neglects correlation but allows the atoms

to overlap, resulting in a purely repulsive interaction. It has

only been within the last several years that calculations have been

performed which employ a wavefunction which passes smoothly from

long range to the region of the van der Waals well.10 Calculations

of the helium pair potential are now in good accord with experimental

data, although there are still some questions regarding the true depth

of the well.10b, 11

In our calculations of the pair polarizability we have followed

the pattern of the pair potential calculations, and have considered

both the long range multipole expansion and the coupled Hartree-Fock

approximation. As we shall show, in contrast to the pair potential

case, the coupled Hartree-Fock model for the pair polarizability does.

reduce to the multipole expansion at large separations, although the

multipole coefficients are incorrect due to the neglect of electron

correlation. Thus, there is an uncertainty in our final results for

the pair polarizability, which can only be removed by using a

wavefunction which accurately describes electron correlations.

Our statistical mechanical calculation of the radial distribution

function is more reliable. The essential ingredient here is an accurate

pair potential function. We have used the MDD-2 potential 12 which fits

well the available experimental data on macroscopic and scattering
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properties of helium and also agrees with the non-empirical

calculations. Further, we shall show that the dielectric and optical

properties are not as sensitive to the pair potential as they are to

the pair polarizability. In the calculation of the quantum

distribution function, we followed methods established recently by

Klemm and Storer. 13

In the next sections, we will review the experimental and prior

theoretical work on the pair polarizability of helium and on the

aforementioned dielectric and optical properties, and summarize our

own computations. Later chapters contain detailed explanations of

the different aspects of our work.

B. Polarizability Definitions

The polarizability of an atom or molecule is a measure of how

easily its electronic charge cloud is distorted by an external electric

field. The electronic structure in the absence of any external forces

is determined primarily by the balance of the electron-nuclear

attractive forces with the electron-electron and nuclear-nuclear

repulsive forces, in accord with the Schrodinger equation and the

symmetry requirements of the Pauli Principle. The measure of these

internal atomic fields is the ratio of the electronic charge to the

square of the Bohr radius, e/a lO 109 volts/cm .. Since most

laboratory fields are considerably less than 10s volts/cm , the

effect of such applied fields on the electronic structure of the

molecule is expected to be small.
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For applied electric fields which are sufficiently small, it is

natural to extend the field-free treatment of molecular electronic

structure to the field-dependent case via perturbation methods.

Thus, one assumes that the electronic energy, E , of a molecule in

an external electric field, F = (Fx ,Fy ,Fz) can be expanded in

powers of the components of F :

E = E(O) 0) Fi - 12 FiF j - I/6 FF k
i i ,j i,j,k ik

(1.1)
y~ FX

- 24 YijkFiFjFkF + ....
i,j,k,2

In this equation, (0) is the i-th component of the permanent

dipole moment of the molecule, ij is the ij component of the

polarizability tensor, while the hyperpolarizabilities a and y

refer to tensors of rank greater than 2 and reflect higher field

effects. The external field also affects the total dipole moment

of the molecule, and the i-th component of the dipole moment is

given by

= (aE"i F Fi=0 (1.2)

Then, from Eq. (1.1) for the energy,

S= (O) + aFj + .... (1.3)
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These last two equations suggest two ways by which the polarizability

can be obtained. That is, it can be obtained from a second order

expression which involves the energy,

S = /2( 32E (1.4)ij aFi9FjF=0 ;

or, from a first order expression which involves the dipole moment,

a = (% F=O (1.5)

From Eq. (1.1) it is seen that the effect of nonzero

hyperpolarizability terms is to give rise to deviations from a linear

polarization law. Buckingham has written an excellent review article

on induced electric moments and their modification by intermolecular

interactions. 14

To place the above definitions in a -uantum mechanical framework,

we consider the Schr6dinger equation for a molecule in a constant

electric field:

[H(F) - E(F)]Y(F) = 0 . (1.6)

In this equation, H(F) is the field-dependent Hamiltonian operator

for a single molecule, and i(F) and E(F) are the (field-dependent)

wavefunction and energy respectively, for the molecule. The exact
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solution of this equation is generally impossible to obtain, so that

one resorts to approximate schemes. For molecules, one begins by

making the Born-Oppenheimer approximation, and then applies either

perturbation theory or variational methods to obtain approximate

solutions to the equation which results.

For constant field, the Born-Oppenheimer Hamiltonian for a

molecule having N electrons whose positions are denoted by ri

and M nuclei of charge Z at R , can be written as:

H = o - i F (1.7)

Here, i is the molecular dipole moment operator defined (in atomic

units) by:

N M
=- - r + Z R , (1.8)i1l ~I =l a ~

and Ho  is the field-free, Born-Oppenheimer Hamiltonian for the

molecule. The essence of the perturbation method is that one assumes

that the ground state energy, EO(F) , and the corresponding

wavefunction, To(F) , can be expanded in a power series in F = F f

EO(F) = F E (n) (.9)n=O 0
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and

To(F)= I Fn n(n) (1.10)
n=0

Substituting these last two equations into Eq. (1.6), and setting

the coefficient of each power of F equal to zero, leads to the

usual set of perturbation equations. The zero and first order

equations are respectively:

(H0 - E 0 ) ) 0 o , (1.11)

and

(H- E(O))(l) - )T(0) = 0 , (1.12)0 00 0

where

0 0 '- I i~~,,
Ell = ,<,(0) (,0)>

The expression for the second order energy is

E (2) < ) )M> '(1.13)



where we have used the normalization condition

(1) 0)>+ (0) = 0 . (1.14)

Comparing Eqs. (1.1) and (1.9) we see that the quantum mechanical

analogue of Eq. (1.4) is

aijFij = -2E 2 ) F2, (.15)~ .~1.~ -o0 (1.15)
:Lj

or,

a.FiF = 2<T(0) 1).>F2
ai j i ~ 0 ~ l o( .6

To obtain the analogue of Eq. (1.5), we note that quantum

mechanically the dipole moment is obtained as an expectation value:

= <> = <Y(F)IvI'(F)> . (1.17)

In view of Eqs. (1.9) and (1.10), this expectation value can also be

represented as a power series in the field:

0 0 Fn+m (n) (m) (1.18)P = 1 F <To 11yo > (1.18)
S n=0 m=0

= <(0) (0)> + 2<.cw0)ji 1 (l)>F + .... (1.19)
=<10 IL'Iyo' 0 0
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Comparing this last equation to Eq. (1.3) we see, of course, that

the same definition of a (Eq. (1.16)) results from consideration

of either the energy or the dipole moment within the context of

perturbation theory.

The problem of computing the polarizability has been reduced to

that of solving Eq. (1.12) for ,l) Using a reduced resolvent
0

notation, Ro = (E(0) - H0)-  , one writes the solution of Eq. (1.12)

formally as:

) = -R°  f To , (1.20)

so that ,the polarizability tensor becomes:

(0) - (0)a= -270l Ro 0  . (1.21)

This last equation is the immediate starting point for the

multipole expansion of a which will be considered in the next chapter.

If one uses variational methods rather than perturbation theory

to solve Eq. (1.6), then Eq. (1.21) is not the expression for the

polarizability which is used. This is our situation in the overlap

region. Here we optimize the variational functional

E = <TIH(F)iG>/<YI> , (1.22)
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to obtain a field-dependent trial wavefunction Y(.F) , from which

the dipole moment is approximated as

ii = <T(F)J1iiT(F)>/<TJT>. (1.23)

To calculate the polarizability we return to Eq. (1.5) and use the

definition of derivative explicitly:

(0)
a = lim F (1.24)13j F + 0 "

This is the starting point of the Hartree-Fock calculations which

will be discussed in Chapter III.

With respect to calculations in the short range region, one

could, from a strictly formal point of view, just as easily use the

definition of the polarizability in terms of the energy, Eq. (1.4).

However, from a computational standpoint, the precision in the

difference between the field-dependent and field-free energies is

less than the corresponding dipole moment difference because one

uses small applied fields (to eliminate hyperpolarizability terms)

and the polarizability is a second order effect in the energy while

it is a first order effect in the dipole moment.

The experimental quantities which will be given in the next

section involve a knowledge of the polarizability tensor for at most

a pajir of interacting helium atoms. If, for a cylindrically
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symmetric system such as this, we choose the z-axis to lie along the

internuclear axis, the polarizability tensor is diagonal, and Eq.

(1.24) becomes:

(0)
lim F , (1.25)

( ) Fil( 1 ) 0 F11j(L)

where the subscripts II and _ refer respectively to directions

along and perpendicular to the internuclear axis. For the case of

interest in this work, the term involving is absent because

the field-free dipole moment of a homopolar diatom is zero.

In terms of the components given in Eq. (1.25), we define the

mean polarizability of the diatom (internuclear separation R ) and

the anisotropy respectively as follows:

a(R) = (cia1(R) + 2aL(R))/3 (1.26)

B(R) = all(R) - al(R) . (1.27)

We further define the mean incremental polarizability by:

Ac(R) = a(R) - 20o , (1.28)

where so  is the polarizability of an isolated helium atom. Note

that because of the symmetry, a knowledge of the quantities a and
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0 is equivalent to a knowledge of all and a . Hence, the

measureable quantities discussed in the next sections provide

information about the individual tensor elements.

We now turn to a consideration of the experiments which measure

the polarizabilities As and B

C. Pressure Dependence of the Dielectric Constant

When a rare gas sample is subjected to an external electric

field, the value of the total field at a point in the sample is not

equal to the applied field, because of additional fields arising

from the (induced) dipole moments of the atoms. In the classical

treatment of this problem, Lorentz in 1908 approximated the local

field in terms of molecular polarizabilities and obtained the

Clausius-Mosotti formula for the dielectric constant,'s

_V2  m = 4 x N co0 . (1.29)

Here, Vm is the molar volume, N is Avogadro's number, c is the

dielectric constant, and a0 is the polarizability of an isolated

atom. The left-hand side of this equation is known as the Clausius-

Mosotti function.

Experimental determination of the Clausius-Mosotti function

requires the measurement of the dielectric constant of the gas at a

given temperature and pressure. This is done by measuring the ratio

of the capacitance of a sample cell to that of ar evacuated cell.
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Early experiments by Uhlig, Kirkwood, and Keyes showed that the

Clausius-Mosotti function exhibits a dependence on the gas density.16

In an attempt to explain the discrepancy between Eq. (1.29) and

experiment, Kirkwood noted that the following two assumptions which

are made in the derivation of Eq. (1.29) are invalid:17

1. The polarizability is itself independent of density;

2. The dipole moment of an individual atoms does not change

as the atom-pairs move through their various phases of

thermal motion.

In reformulating the problem without these assumptions, Jansen

and Mazur' 8 and Buckinghdm and Pople 19 made use of classical

statistical mechanics to relate the dielectric constant to the total

induced dipole moment of the system,

_- 4 <M(F)>C- 2Vm = lim F ' (1.30)
F 0

where the electric moment <M(F)> is given by:

[M((T,F)*f]exp[-(U-M(T,F).F)/kT]dT
~<M(Q)> :exp[-(U-M(T,F)*F)/kT]dT (1.31)

Here, M(r,F) is the total electric moment of the system, when the

molecular configuration is T , and the applied field is F . It is
N

assumed that M = k where k is the dipole moment of the k-th
k=1
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molecule, and N is the number of molecules in the specimen. In

addition, in Eq. (1.31), f is a unit vector in the direction of F

and U. is the intermolecular potential.

By making a virial expansion of Eq. (1.30), and applying the

results to S-state atoms, which have neither a permanent nor a

collision-induced dipole moment, they obtained:

Vm = A + B V-1i + C V-2 + .. , (1.32)
c+2 m C M m C m (.2

where

47rNA = 3-s (1.33)

and

B -87T2N21 R )e U(R)/kT

B = 3 2  dR R2 A(R)eU(R)'kT (1.34)
0

InEq. (1.34) the Aa(R) is the incremental mean polarizability of

a pair of atoms with separation R defined inEq. (1.28), k is

Boltzmann's constant, and T is the absolute temperature, The

coefficients A and B are called dielectric virial coefficients.S S

McQuarrie and Levine extended these results to include the derivation

of,an expression for the third virial coefficient, C , for the

case of non-polar molecules with axial symmetry, such as H2 or C02.20



The A and B were measured for several rare gases at room

temperature by Orcutt and Cole.la In addition, low temperature

data (T = 40K) for both 3He and 4He were taken by Kerr anG

Sherman.1b We present the results of these experiments in Table I.1.

The percent change in the Clausius-Mosotti function at room

temperature is on the order of .1% for helium and 1% for argcn for

pressures near 2 atm. At low temperatures (near 40K), the change

is some 30% less than the room temperature change. Thus for

pressures on the order of 1 atm. or less, it is very difficult to

measure the pressure effects on the Clausius-Mosotti functicn. The

helium data at 4°K of Kerr and Sherman exhibit a large amount of

scatter. This is because the inherently small effect is compounded

by the small amount of sample present in the cell at these pressures.

The amount of scatter is reduced at higher pressures (~4 atm.), but

then the validity of the virial expansion is doubtful.

Several workers have coupled the results of model polarizability

calculations with classical statistical mechanics to obtain high

temperature estimates of B 18,19,21 Some of the earliest of theseS

calculations employed the point dipole approximation. 19 The

simplicity of this approximation makes it particularly attractive,

hence we now treat it in more detail. With this model, one assumes

that the dipole moment induced in a given atom (denoted by 1) due to

action of the external field F , and a second atom (denoted by 2),

a distance R away, is given by:
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Table I.1. Experimental first and second dielectric virial

coefficients for several rare gases.a

System T(oK) AE(cm 3/mole) B (cm6/mole 2 )

He 322 0.519 ± 0.001 -0.06 ± 0.04

Ne 322 0.998 ± 0.001 -0.03 ± 0.10

Ar 322 4.142 ± 0.002 0.39 ± 0.20

Kr 322 6.267 ± 0.003 5.6 ± 0.30

3He 4 0,516951 ± 0.000088 -0.030 ± 0.004

4He 4 --- -0.023 ± ?

a The room temperature results are those of Orcutt and Cole,

reference (la); the low temperature results are those of Kerr and

Sherman, reference (lb).
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V= aO(F + Fj) ,(1.35)

where FI is the field at 1 due to the dipole at 2 . A similar

expression is used for P2 . Using the usual expressions for the

field due to a dipole, it is seen that p, can be written:

(z ao Fx a0 Fy o Fz (1.36
ll I+aoR- 3 ' 1+aoR-3 ' 1-2aoR-3 (1.36)

where ao is the polarizability of an isolated atom. Differentiating

Eq. (1.36) with respect to the components of F , and expanding the

result for large R , yields:

a1l(R) = 2a0 + 4a0 R- 3 + 8a R- 6 + ... , (1.37)

and

al(R) = 2a0 - 2a0 R 3 + 2a R-6 + .... (1.38)

These results are exact through order 3 in R-1 . This was

first shown by Jansen and Mazur, who used an exact quantum expansion

of a in powers of R-1 .18 This expression will be derived, and

discussed in some detail in Chapter II.

The estimate of B by Jansen and Mazur makesuse of the Unsold

approximation.18 In essence this represents an approximation to the
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resolvent operator, Ro , in the perturbation expansion, Eq. (L21).

This will also be discussed in more detail in Chapter II.

In the calculations of Jansen and Mazur, results were obtained

for both helium and argon,18 while Buckingham and Pople applied their

method to more complicated molecules, including those in which a

dipole moment in one molecule is induced by the permanent quadrupole

moment of another molecule. 19 ,21

Since the rare gas experiments had not been performed in 1955,

the thrust of the theoretical work was to establish experimental

feasibility. It must be remembered, however,that both of these

early calculations used approximations to the polarizability which

were meaningful in the long-range region only, thus the physical

content of their theories was not complete.

Additional work on the classical statistical mechanical aspects

of this problem was done by Hill in 1958,42 and Ishihara and Hanks in

1962. 4 3

Theoretical interest in the second dielectric virial coefficient

was renewed by the accurate room temperature experiments of Orcutt

and Cole in 1967. In particular, the reported sign change (from

negative to positive) in Be as one goes through the series, (He,

Ne, Ar) aroused considerable interest, because the early calculations

predicted positive values for the entire series. This is understandable

because a negative value for helium means that for some range of

finite separations the polarizability of the dimer is sufficiently less
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than the sum of the separated atom polarizabilities so that the

integral which defines B is negative. Thus since the early
£

calculations used models which at best are valid approximations in

the dispersion region only, effects in the overlap region could

outweigh the positive long-range contribution to produce a negative

value for B
S

Levine and McQuarrie in 1968 modeled the rare gas interaction

using metallic spheres; 22 DuPre 1nd McTague in 1969 used the 3

state of H2 to represent a pair of interacting rare gas atoms.2 3

Both of these calculations indicated that short-range effects did

produce changes relative to the long-range extrapolations in the

polarizability curves, but neither result was directly applicable

to the helium problem in particular.

Lim, Linder, and Kromhout in 1970 performed both coupled and

uncoupled Hartree-Fock calculations on the polarizability of the

He2 dimer over the range of R from 1.0 to 6.5 a0 .24 Their

failure to produce a negative value for B resulted from the
S

failure of their short-range (negative) contribution to compensate

for the positive contribution in the dispersion region. This gave

rise to the possibility that previous estimates of the long-range

effects had been too large.

For calculations in the low temperature regime, the expression

for B which includes the effects of quantum statistics has been
recently drived Rch and i n 25recently derived by Bruch, and is given by:25
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B -87r2N2 dR R2 Aa(R) g(R) . (1.39)~3
0

Here, g(R) is the quantum-mechanical pair distribution function,

which reflects the probability that two atoms will be found within

a separation R of each other. The g(R) is, of course,

temperature dependent.

Formal differences between the classical and quantum treatments

arise because the expression for <M(F)> takes on a somewhat

different form in quantum mechanics. For this case, <M(F)> is

expressed as:

Tr[e-H M(TF)-f)]
<M(F)>= T_ , (1.40)

Tr(e-5H)

where = 1/kT

Tr(A) = < ZAjy>

and *9 denotes a possible state of the quantum mechanical system.

Since H is now an operator, differentiation is accomplished via

the formula:

a e-H -H [f eaH -aH
aF = -e da e T e ] . (1.41)

0
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Here H can be taken to be the Hamiltonian operator for the

relative motion of a pair of atoms.

This summarizes the theoretical and experimental work on the

dielectric virial coefficients up to the point at which the present

work was begun.

One goal of the work reported in this thesis is to establish a
definitive result for the polarizability in the long-range region.

A second goal is to compute a more accurate value for the short-range

effect via attainment of the Hartree-Fock limit, in that region, and

to use these results to compute B for both low and high

temperatures.

During the time in which this work was in progress, results of

additional polarizability calculations for He2 have been reported by
Buckingham and Watts, 26 and O'Brien et al. 2 7 Only the latter

calculation resulted in a negative value for B at room temperature.

No attempt to match the low temperature results of Kerr and Sherman

was made in either of these calculations.

D. The Kerr Effect

In the absence: of external fields, the index of refraction

of gaseous helium is isotropic. However, if one uses polarized light

to measure the index of refraction, n , when the sample is placed

in a static electric field, F , he finds that the value of n for

the case in which the polarization vector of the light and the
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applied field are parallel (n) differs from that in which they are

perpendicular (nj) (field induced birefringence). This effect was

discovered in glass by Kerr in 1875, and is known as the Kerr

electro-optic effect. 28 For this phenomenon, the quantity of

interest is the molecular Kerr constant, mK which is defined as: 2 9

m lim 2(ni - n9)Vm
mK = lim 27F (1.42)F 0 27F2

In this equation, Vm again is the molar volume. More recently,

Buckingham and Dunmur havemeasured mK for a number of gases.32

In order to experimentally determine mK , one measures the

field-induced birefringence for a given pressure and temperature, as

a function of electric field strength. Extrapolation of the ratio,

2(n, - nl)V /27F 2 to zero field then yields the value for mK1 mK
Not surprisingly, it is found that the molecular Kerr constant,

like the dielectric constant, exhibits a pressure dependence. For

gases at low density, Buckinghamand Pople related mK to molecular

polarizabilities. 30 Buckingham, 31 and later Buckingham and Dunmur32

discussed the corresponding treatment for gases at higher densities,

by making a virial expansion similar to that used in the dielectric

constant analysis. In this last paper, it was shown that for light

of low frequency (much less than the first excitation energy of the

atoms), the first two terms in the density expansion of mK for a

gas of atoms are:
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mK = AK + BK p , (1.43)

where

AK - 81 (1.44)

and

BK  8I 2N2  dR R2 (o(R)) 2 e- U(R)/kT . (1 45)
BK 405kT o0

Here the p is the density, o(R) is the anisotropy in the

dipole polarizability for a pair of interacting atoms at a separation

R , and y is the first nonvanishing hyperpolarizability of an

isolated atom. This is a high temperature result, because the

classical limit of the pair distribution function is used.

For the quantum case, Bruch has shown that replacing the factor

e-U(R)/kT with g(R) yields an upper bound to the value of pK 25

Differences between the quantum mechanical and classical

mechanical treatments of the Kerr effect arise because of the

different form for the ensemble average in the two realms, as was

observed in the corresponding treatments of the dielectric virial

coefficient. The situation is even more complicated in this case

than it was in the dielectric virial case, because of the need to

take second derivatives, by applying Eq. (1.41) a second time.
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Experimental values for AK and BK for several rare gases

at room temperature are given in reference (32), and are listed in

Table 1.2. Results for BK for helium gas are conspicuously absent

from this table. This is because the pressure effect on mK at

room temperature is too small to be detected. Since low temperature

experiments have not been performed as yet, it is not clear whether

or not a decrease in temperature might render the effect observable.

One purpose of this thesis is to estimate the magnitude of mK at

low temperatures.

There are two additional points r6garding the above equations

worth mentioning:

1. The field strengths used in these experiments are larger

than those used in the dielectric constant experiments,

hence nonlinear polarization effects (via y ) are included.

2. In the derivation of Eqs. (1.43)-(1.45) the density

dependence of y was ignored, so that the higher virial

coefficients do not involve an integral over y(R) , in

this approximation.

Note that the expressions for B (Eq. (1.34)) and 8K are

similar, except that the respective integrands involve different

functions of the polarizability components all and a, . Thus,

regarding the polarizability tensor, the dielectric virial and the

Kerr virial measurements are complementary.
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Table 1.2. Experimental first and second Kerr virial

coefficients for several rare gases.a

System T(oK) 1014 AK(esu) 1012 8K(esu)

He 296 0.25 ± 0.02 ---

Ne ?96 0.48 ± 0.04 ---

Ar 296 5.5 ± 0.4 4.1 ± 0,6

Kr 296 13.0 ± 1.0 16.0 ± 14.0

Xe 296 36.0 ± 1.0 65.0 ± 22.0

a Results are those of reference (2).
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E. Collision Induced Radman Scattering

The change in the polarizability during a collision of a pair

of rare gas atoms gives rise to a light scattering spectrum, which

is called the collision induced Raman spectrum.

Experimental detection of such scattering was reported by

Crawford, Welsh, and Locke 33 as early as 1949 for 02 and N2 gases.

McTague and Birnbaum 34 in 1968, and Gersten, Slusher, and Surko 3s

in 1970 reported similar observations in argon and krypton. Pike

and Vaughan 36 have recently measured the light scattering spectrum

of both liquid and gaseous helium, the latter at 4.20K.

The expression which relates the intensity of the scattered

light, I(w) , to the experimental parameters, has been derived and

discussed by several workers, and is given by:3,34, 37 ,8 I

I() = K F(t)e-i'wt dt . (1.46)

Here,

K = V2 p 2 k I /(327 2 R2 ) , (1.47)ip 0

where, V is the scattering volume, p the number density of the

sample, ki the propagation vector of the incident beam, I its

intensity, P is the permittivity of the sample, and R0  is the

distance from the detector to an arbitrary point in the sample
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(assumed to be much greater than the sample dimensions). The

expression for F(t) is, for light scattered at right angles,

F(t) = <Aa(t=0).Aa(t)>(ni. f)2

(1.48)
+ <8(t=0)B(t)( 11 (3cos2 (t)-l))>{45-1(3 + (n .nf)2)} 1

In this equation, ni and nf are unit polarization vectors of the

incident and scattered beams respectively; e(t) is the angle

between the internuclear vector of a diatom at time t and an axis

defined by its vector at time t=O ; a(t) and s(t) are

respectively the mear incremental polarizability and anisotropy of

the diatom at time t , while the brackets denote an ensemble average.

Experimentally, one often measures depolarization ratios which

may be defined in a variety of ways, which depend on the geometry of

the experiment. In the low temperature work of Pike and Vaughan,

light from an argon ion laser was passed horizontally through a cell

containing gaseous helium. 36 The incident light was introduced in

either horizontal (H) or vertical (V) polarizations, and the

intensity of the light scattered at 90' was analysed in both the H

and V polarizations. Their data for helium gas at 0.96 atm and

4.22K is given in Table 1.3 for a frequency shift of 21 cm'1 from

the exciting line, using a spectrometer with an instrumental

linewidth of 5 cm-1
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Table 1.3. Experimental depolarization ratios at a shift of 30K in

helium liquid and gas.ab

Depolarization Ratio Liquid Gas

V-V/V-H 1.52 ± 0.2 1.33 ± 0.2

H-V/H-H 1.1 ± 0.2 1.0 ± 0.2

V-V/H-V 1.29 ± 0.1 1.39 ± 0.2

a Reference (36).

b Gas experiments were done at 4.22 0K at a pressure of 0.96 atm.

Liquid experiments were done at 4.22 0K and 1.15 atm.
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Eqs. (1.46) and (1.48) give the following expressions for the

depolarization ratios measured by Pike and Vaughan.

V-V/V-H = [A(w) + <5'sB(.w)]/[3 5<B(w)] , (1.49)

H-V/H-H = 1 , (1.50)

V-V/H-V = V-V/V-H . (1.51)

Here, the Fourier transforms A(w) and 8(w) are defined by:

A(w) = <Aa(0)A(t)>e-iwt dt , (1.52)

and

00
B(w) = f <a(0)8(t)Pa(cose(t))>e-iWt dt . (1.53)

-00

Here, P2(x) = '/2(3x2-1) is the second Legendre polynomial.

We see that the data in Table 1.3 are consistent with these formulas,

and, furthermore, imply that A(w) << B(m) since in this limit

V-V/V-H = . (1.54)
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Although the accuracy of the reported data is not sufficient to

distinguish the contribution of A(w) to the depolarization ratios,

we shall estimate its effect computationally in order to verify that

it is not obserwvble in the present experiments and to establish its

magnitude for use in planning future experiments. To avoid dealing

with time-dependent correlation functions, which are difficult to

compute, we shall instead deal with integrated intensities, or the

zeroth frequency moments of Eqs. (1.52) and (1.53)

A 2 1 A(w) d = <Aa(0)2> , (1.55)
27T

0

and

B = B(w) dw = <B(0)2> (1.56)
0

We shall calculate the depolarization ratio corresponding to

Eq. (1.49) and defined by

D = [A + 515sB]/[3<sB] , (1.57)

= + 15A/B (1.58)

Thus the interesting part of D involves averages over both the

incremental mean polarizability Aa and the anisotropy . Higher

moments of (1.52) and (1.53) lead to other experimental parameters
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such as linewidths, and approximations to line shapes. These

extensions, however, involve more than the simple integrals of Eqs.

(1.55) and (1.56).

Semi-empirical work by Levine and Birrbaum on the collision

induced Raman scattering of rare gases has been directed toward

obtaining a model for B(R) . Using a modification of the point

dipole anisotropy, 37

(R) = 6a R- 3 + BR-P , (1.59)

they derived high temperature, two-body expressions for the first two

moments of the spectral functions, A(m) and 8(w) , and obtained

values for p and B by comparison to the experimental results for

these moments, for argon, krypton, and xenon. Typical values so
O

obtained for argon are on the order of 10 and -1.0 x 105 A13

respectively. This is then interpreted to mean that short-range

effects as represented by the Br p term are indeed significant.

Recently, Gelbart has given a quantum mechanical treatment of the

depolarization and inelastic scattering of light by gases and liquids

composed of atoms and/or isotropically polarizable molecules. 38

Effects due to collisions of more than two particles were also included.

F. Perspective

Apart from stricly formal treatises, prior theoretical work on

estimating the properties of interest has been restricted to the
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high temperature regime, and have involved the coupling of

polarizabilities computed at different levels of approximation with

classical averaging procedures. The various polarizability models

which were used and the conclusions of their respective calculations

are discussed in some detail in subsequent sections; however, for

purposes of understanding the motivation for the present work, we

note at this point that the most successful of these model approaches

employed the Hartree-Fock approximation.

The meaningful use of any model depends on the existence of

well-defined, reproducible model limits. In the case of the

Hartree-Fock approximation, this requires assurances that in a given

calculation the Hartree-Fock limit (the limit of zero basis set

error in the Hartree-Fock-Roothaan scheme) has been reached. 39 This

is a particularly important point when one considers the history of

He2 pair potential calculations.

In an early Hartree-Fock calculation on the ground state

potential energy curve of He2, Ransil reported that the dispersion

minimum was observed.40 This minimum was later shown, by further

calculations, to be spurious, and was attributed to an idiosyncracy

in the basis set which Ransil used.41 Thus the validity of any

conclusions drawn from the use of the Hartree-Fock-Roothaan scheme

depends directly on the closeness of the calculation to the

Hartree-Fock limit.
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None of the Hartree-Fock calculations of the polarizability

which have been thus far reported, purport to represent the

Hartree-Fock limit.24,26,27 It was our intent in carrying out the

present work to remove this uncertainty and establish the need or

lack thereof of more accurate calculations, which include electron

correlation effects.

It goes without saying that even if a certain model duplicates

experiment at one temperature, it does not necessarily follow that

the same model will be equally useful at another temperature for

which the physics of the problem might be different. This means

that a given polarizability result must be tested at both high

temperatures using classical statistical mechanics and low temperatures

using quantum statistical mechanics if one wishes to make claims

regarding the usefulness of the model from which the polarizability

resulted. In addition,isotopic effects may be introduced in the low

temperature region so that the ability of a given model to produce

such effects must also be guaranteed.

Since no low temperature work had been carried out up to now,

previous workers did not subject their polarizability results to

these important tests. This is, of course, insignificant when

considering models which make no claim for general usefulness.

The quantum statistical methods seem to be on somewhat firmer

ground than the polarizability calculations, although they have

never been used for anything other than equation of state

applications.
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It was the intent of the work reported in this thesis to couple

the Hartree-Fock limit polarizabilities to quantum statistical

mechanical results for the two helium isotopes (3He and 4He) in

order to duplicate the results of both low and high temperature

experiments. This was done with the intent of establishing a basis

on which one can judge whether or not he is justified in using the

same approximations in the calculation of the polarizabilities of

other systems or in the calculation of different but similar

molecular properties.



CHAPTER II

POLARIZABILITIES OF DIATOMIC MOLECULES IN THE LIMIT

OF LARGE INTERNUCLEAR SEPARATIONS

Early estimates of the dielectric virial coefficient employed

extrapolations of approximate polarizabilities from the dispersion

region to the regions of smaller R .18,19 One such approximation,

the point dipole model, has already been discussed. It is apparent

that if the leading contribution to the point dipole incremental

mean polarizability (see Eqs. (1.37) and (1.38)),

At(R) = 4a' R-6 + ... (2.1)

is used for all values of R to compute a value for B. for a gas

of ground state atoms, a positive result is obtained, in contrast to

the observed negative result for helium. It is natural to ask

whether this discrepancy is due to the inaccuracy of the point dipole

approximation itself, or due to the use of a long-range result for

all values of R .

In this chapter, we show that the point dipole model gives the

leading asymptotic behavior of Aa , although the magnitude of the

leading multipole coefficient is too small by about a factor of four.

38
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We derive the long-range multipole expansion of the diatomic

polarizability in Section A, illustrate its connection to the point

dipole model in Section B, and discuss the calculation of the

leading terms for the H2 , HeH, and He2 systems in Section C. The

results of the first two sections were first obtained by Jansen

and Mazur.18

A. The Long-Range Multipole Expansion of a(R)

A rigorous treatment of the pair polarizability of two atoms in

the long-range region can be carried out using Rayleigh-Schridinger

perturbation theory. In the long-range region, the electron clouds

of the two atoms do not overlap, and it is not necessary to require

the diatomic wavefunction to satisfy the Pauli Principle for electrons

centered on different atoms. This greatly simplifies the calculation

of the polarizability.

Let us consider two S-state atoms, a and b , separated by a

distance R . The starting point of the development is the general

expression for the polarizability, Eq. (1.21),

a= -2<To1i R0  L'o> . (2.2)

In this expression, T0 is the wavefunction for the diatom in the

absence of the electric field, Ro is the reduced resolvent for the

diatom, symbolically,
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RO =  (E0 - Ho) -  , (2.3)

where Ho is the diatomic Hamiltonian and Eo is the ground state

energy,

(H0 - Eo) o  = 0 (2.4)

The is the total dipole moment operator, which is a sum of the

dipole operators for atoms a and b ,

sa +bS a + vb. (2.5)

In the following derivation, we shall consider separately the cases

that the external field is along the internuclear axis (designated

the z-axis) or perpendicular to it. For simplicity of notation, the

expansions of Eqs. (1.18) and (1o21) shall be written as scalar

expansions with the understanding that the resulting polarizability

expressions apply for the respective components.

We now wish to obtain an expansion for u in inverse powers of

the separation R . The R-dependence in a occurs both in the

wavefunction To and the resolvent Ro . We proceed by subdividing

the diatomic Hamiltonian according to

Ho = ho + V , (2.6)
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where ho is the sum of the atomic Hamiltonians for a and b ,

and V represents the Coulombic interaction between a and b

Similarly, for the energy, we have

Eo = co + AE (237)

To obtain the multipole expansion of To , we first resolve the

Schrodinger Equation (2.4) into perturbation equations based on

Eq. (2.6),

To -- o * o W) + (2), +(2.8)

where

AE = E(1) + E(2 ) + .. , (2.9)

(ho - o)po = 0 , (2.10)

(h0 - eo)(l ) + (V - E(1 ))p0  0 , (2.11)

(h0 - (oT(2) + (V - E(1))(l) - E(2 ) o =  0 , (2.12)

with the full normalization conditions,
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>= o , (2.13)

<#.7(2) (2) 1 0> ~27()z01>. (.4=4.T > .T (2.14)

The solution of these perturbation equations is well-known.

The po is a simple product of atomic wavefunctions for atoms a

and b ,

o= ao0 bo (2.15)

Introducing the reduced resolvent for ho

ro= (o - h0)' , (2.16)

we have

0') = ro(V - E(1))o , (2.17)

and

T (2) = ro(V - E(1))0) - 12 O ) ()>. (2.18)0 0 0"

The R-dependence is still implicit in these equations. However,

both V and AE have well-known multipole expansions in inverse
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powers of R.82 For our purposes we need consider only the leading

terms

V3
V R3 +  (2.19)

and

E( 1 ) = 0 , (2.20)

E( 2 )  - 4  "' ; (2.21)R6

where V3 is the dipole-dipole interaction operator,

V3 a b + a b -2 a -b= a b ^a ^b - 2ia pz (2.22)x x y y z z

and

C6 = -<o0 IV3 ro V31~o > . (2.23)

Then, introducing the multipole expansions into Eqs. (2.17) and

(2.18) and collecting terms,

To= 0 + R-3 roV 340 + R-6[roV 3roV 3 - 1/2<oIV3roV3 1qo>]po + .

(2.24)
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Although we have not exhibited all the terms in To , we have shown

those terms which contribute to a through order R-6

Finally, the R-dependence of the resolvent Ro is obtained by

invoking the operator identity,

(A-B) - I = A- I + A-1 B(A-B)- 1  (2.25)

for A = co - ho and B = V - AE . Thus,

Ro = ro + ro(V - AE)RO (2.26)

Iterating this equation we obtain

Ro = ro + ro(V - AE)r o + ro(V - AE)ro(V - AE)r o +. ,

(2.27)

and then introducing the multipole expansion,

2Ro = ro + R 3 roV 3r0 + R-6-C 6r0 + rOV 3roV3ro] + ... (2.28)

Again we have exhibited only those terms which contribute to

through order R-6

The multipole expansion of a may now be obtained by

substituting the expansion for To , Eq. (2.24), and for Ro , Eq.

(2.28) into Eq. (2.2). When this is done, we obtain
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A3 A6
a = 2a0 + L + , (2.29)

R3 R6

where

2 0 = -2<poj0 r 0 i 0> , (2.30)

A3 = -4< oIV 3 ro ro ;rio> - 2<o0 j ro V3 ro i10>

(2.31)

and

A6  = -4< oIV 3 ro V3 ro ro ; o> - 4< oIV 3 ro ro V3 ro I 0>

- 2<pjO ro V3 ro V3 ro ;i o> - 2<~ojV 3 ro ro ro V3j 0>

+ 2<poJV, r V31 o>< o ro I0>

S2<q 0 V3 ro V3 o><c0  l r 2 0>

(2.32)

where these expressionsapply for the parallel component of a

when P = pz , and the perpendicular when = x

We note that the individual components of a involve terms

which decrease as R-3 In the next section, however, we show that



46

A3  = -2A3  (2.33)

Thus, the incremental mean polarizability has the asymptotic behavior,
?e -

AA8

Aa = /(a + -) = 2a0O + -6 +  (2.34)

where

AA6 = 13(A" + 2A) . (2.35)

The terms of a which decrease as R-3 yield the leading terms in

the asymptotic expansion of the anisotropy

3A7 (A6 - A ) +(.68 = a -al = -R+ R6 .... (2.36)

For reference in later sections of this chapter, we note that

the reduced resolvent operator, ro  , can be expanded in terms of

the excited eigenstates of ho = ha + h b

r = lbaKbO><aKbO +, ' laobL><a0bLI + IaKbL><aKbL
~a a L b a-E E:-Ka L _ K L 6a _ a+ b b
K 0 L K L K0 L 0

(2.37)

where aK and bL represent excited states on the respective centers

and the prime means that the terms K = L = 0 are omitted from the sums.
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B. Connection between the Point Dipole Model and the Quantum

Mechanical Multipole Expansion of the Polarizability

It is instructive to relate the exact long-range behavior of

the polarizability to the predictions of the point dipole model.

This is the object of the present section.

Before treating the problem mathematically, we can make certain

qualitative statements regarding what to expect. Since the point

dipole model ignores the details of atomic structure, whereas the

quantum mechanical treatment correlates interatomic electronic motions,

we should expect differences in those terms which are present in both

the field-free and field-dependent quantum multipole expansions of

the interaction energy. On the other hand, since the point dipole

model reflects modifications in the local field at a given atom due

to the field-induced dipole moment in the other atom we might expect

some degree of similarity between the terms of the two expansions

which do not appear in the field-free quantum expansion, and represent

therefore field--induced terms in the quantum expression.

The manifestation of the first of these points will be clearly

seen when we consider the actual results of the calculation of the

long-range coefficients for specific systems. The second point is

immediately accessible, and will now be illustrated by showing that

the A3 term which results from the point dipole model is identical

to that which results from the exact quantum mechanical multipole

expansion. For simplicity, we consider the A3 term only. Since
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thie components of the dipole moment operator behave like the

corresponding components of the vector r , and since z a +b
z z z

wvie can write Eq. (2.31) as:

Aa ^b r -r a ^b >A3 = -2[-4<iiz i z r0 oz rO  zI 0> - 2<p 0 z ro z z ro zw 0>

= [T1 + T2]

(2.38)

Further, only those parts of r0  which are of p-type symmetry (behave

like Y10  spherical harmonics) can lead to nonzero contributions to
11A3 . Thus, using superscripts to label the respective centers ,

subscripts to label different atomic states of a given symmetry,

Aa to deot _ aAcK to denote ea - K, and writing = a0 b0 , we have:

<acboja b a b a 0 pb bjMbjbo>
TI = 8 Y,' Ia~ Pz, L >aoK<P LPM><PM zbT1 = b0>

KL,M (Ac + Aeb)ebM

(2.39)

^a<ab b a b b b a a # 0a
<a~b i a IbPaPL><PLUibo><Pal a> aj aoa>

8 0z
K,L,M (AE + 0LK)AZ0>

Because of the orthonormality of the atomic states, this last

equation can be factored, using the identity

(ab)-1 = [(a+b)al-i + [(a+b)b]- ,



49

Ti = 8 '[<aoj^ Ip> 2<b lbpj,> <ao! jp1>2<bOjIbIb2] ,(2.40)= ' + ,(2 40)
K,L (A + AE: Eb (b + )

, <aoj4 a>,2 <bo b 2pb2
<a0  a ][ bI , (2.41)

K AE AE
LL

a bS2a' a b (2.42)

Similarly,

<a0 If a>IpK>2< p zlbo>2 <boIGbipb>2<pajIaja >2
T2 = 4 <aa b+ 4 L 0

K, Ca Aeb A:b a a
KL SK "L K,L L K

(2.42)

= 2a a (2.43)

Thus,

aI b
A3  = 44 a , (2.44)

which is identical to the general point dipole result for a

hqterqpolar diatom.

In a similar fashion, using the symmetry reduction procedure

discussed in the next section and described in Appendix A, one can

show that,
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AL = -2a a (2.45)

Thus, as was first shown by Jansen and Mazur, the leading term in

the point dipole expansion of the polarizability is identical to

that obtainqd from the exact quantum mechanical multipole expansion.
18

A significant implication of this is that the leading contribution to

the mean incremental polarizability for a diatom goes as R-6 , since

A3 + 2AI = 0 .

It does not appear possible to obtain a simple relation between

the quantum mechanical and point dipole expressions for the higher

multipole coefficients, however. The accurate numerical evaluation

of the terms A and A is described in the next section.

C. Accurate Long-Range Polarizability Calculations for the

H2, HeH, and He2 Systems

The initial application of the equations of Section A to the

calculation of the long-range contribution to diatomic polarizabilities

were made by Jansen and Mazur in 1955.18 In particular, they used the

Unsold approximation to simplify the use of Eq. (2.32), and computed a

value of the second dielectric virial coefficient for helium gas. The

Uns ld approximation involves the replacement of the energy

denominators in r0  (see Eq. (2.37)) with some average value, Ac ,

so that r0 can be written:
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ro  -K > K, (2.46)

and using the completeness of the states K '

ro 1 (1 - 1o0>< oj) . (2.47)
AE

With this approximation, one avoids having to compute the spectrum

of atomic excited states.

The results of the Uns6ld approximation calculations for helium

yield values of A6 and A6 of 7.59 a and 3.94 ao respectively;

here, ao is the helium atom polarizability.

Thus, as far as approximate calculations in the dispersion region

are concerned both the point dipole and the Unsold approximation yield

positive values for B for helium gas. However the possibility ofs

obtaining a negative value via the extrapolation of an accurate

dispersion polarizability has not been completely eliminated. To

test this, we have computed A6 as given by Eq. (2.32).

The only accurate calculation of A6 prior to the present one

was that of Tulub et al. for H2 , in 1970. 44 In their work, they used

a multipole expansion of the interaction energy of a pair of hydrogen

atoms in an electric field, and averaged this energy over all

orientations of the internuclear axis with respect to the field.

They then solved the resulting perturbation equations variationally.

A drawback of this procedure is that only the mean value of A6 is
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obtained; hence strictly speaking, no accurate detailed knowledge of

the A6 tensor was available at the time the present work was

performed, even for a system as simple as H2!

As in the Unsold approximation, Eq. (2.32) serves as the basis

for an accurate calculation in the long-range region. Ignoring, for

the moment the question of how r0  is to be obtained, we note that

Eq. (2.32) is not in a computationally convenient form because the

various terms contain all the Cartesian components of v in V3 .

Eq. (2.32), however, can be simplified so as to yield an expression

which involves only the z-components of the various operators. This

symmetry reduction consists of a straightforward but tedious

application of the Wigner-Eckardt theorem 4s to the terms of the

equation which results when Eqs. (2.22) and (2.37) are introduced

into Eq. (2.32). A discussion of this simplification is given in

Appendix A.

The expression for the components of A6 which results can be

written:

A6  = -(1 + Pab)[Ml<Vro Vr0 p r0 p>s + M2<Vro Vro p r0 p>D

+ M3<Vro p roV ro >s + M4<VrO p roV ro p>D

+ Ms<p ro Vro Vro p>s + M6<p ro Vro Vro u>, (2.48)

+ M7<Vro p ro v roV> S + M8<Vr o p ro p roV>D

+ M<u2 2V> + M< r ><Vr V>+ M9<p ro p><Vro V> + M10<p ro p><Vro V>]
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In this equation, V a - a P is the permutation
z z z ab

operator for the two centers, and the brackets denote an expectation

value with respect to qo The coefficients Mk are given in

Table II.1. The subscripts S and D are explained below.

There are several points worth noting about Eq. (2.48). First,

its use requires only atomic information as input. That is, ro

refers to the reduced resolvent operator for the Hamiltonian,

a hb
ho = h0 + ho , so that the excited states which enter the spectral

expansion of r0 , Eq. (2.37), ave products of atomic eigenstates on

the respective centers. This is a significant simplification as far

as computations are concerned, because atomic calculations are much

easier to carry out than the corresponding calculations on the

diatomic systems, Second, because of the orthonormality of the

atomic states, only certain symmetries enter a given r0  so as to

yield nonzero contributions to A6 . The particular symmetries

required in a given r0  depend on its position in the matrix

element under consideration. As an example, consider the first term

in the above expansion, and assume that the resolvents are numbered

from left to right. Since V a b , the only nonzero contributionsz z

from the first ro are due to terms which denote states of p-symmetry

on each center. Similarly, the second resolvent can only involve

those states which are represented by products of excited S or D

functions on each center. Lastly, the third resolvent involves only

those products which consist of p-states on center a and b0 on
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center b . This last statement is appropriately modified under the

action of Pab by using excited p-states on center b , and a0

on center a .

The above points allow for a notational simplification which

unambiguously defines the states entering each resolvent. This

consists of explicitly specifying the symmetry (S or D) of the middle

resolvent, so that the symmetry of the other two can be obtained via

the orthogonality of the atomic states. Thus, the first two terms

of Eq. (2.48) result from the two possibilities for the second r0

which enter a single matrix element, where the subscript refers to

the symmetry of the middle resolvent.

The computational ease with which Eq. (2.48) can be used rests

on one's ability to compute the atomic resolvents. In most cases,

the exact calculation of these operators is, of course, impossible.

Thus, one generally resorts to approximate schemes to compute them.

The method used in this work was to obtain "variational"

approximations to the excited spectra by diagonalizing the matrix of

the Hamiltonian operator in a basis set, for the atomic systems of

interest.

In our work, the individual components A1 and A6  were

obtained by performing separate calculations for the S , P , and

D parts of the resolvents. Moreover, since we also symmetry reduced

the expression for A6 , only the mL = 0 components of the atomic

states were needed.
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Table 11i.1. The coefficients, Mn  appearing in the expression for

A and A a

M1  M2  M3  M4  M5  M M7  M8  M9  M o

A6  24 12 16 22 8 11 8 11 -12 -12

A6 24 -6 4 19 2 2 -12 -12

a See Eq. (2A48).
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The atomic basis functions for the helium calculations were

taken to be of the form,

nZ = FnZ ao , (2.49)

where a0  is Hart and Herzberg's twenty term, directly correlated,

variational approximation to the He atom ground state wavefunctiono 46

The form of this wavefunction and the parameters used in it are given

in Table II.2.

The advantage of choosing this particular form for the basis

set is that, for sufficiently accurate a0 , the matrix elements of

the operator (ha - ) are given, to sufficient accuracy by:4 7,4 8

2
<n'(ha - /0)n > = 1 <aolvFn ' ViFn Jao> (2.50)

i=1

This last equation is exact only if ao is an exact eigenfunction

of ho . Thus, this method is equivalent to replacing ho by h ,

so that for the particular a0  used, one has (ha - o)ao = 0 ,

while ignoring (ha - ha) o The justification for the use of this

approximation in conjunction with the Hart-Herzberg wavefunction

will be given later by comparing the results of expectation values

of various operators for the ground state of He which were computed

using it, to the corresponding results obtained by using more

accurate wavefunctions.
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Table II.2. Numerical parameters for the Hart-Herzberg He atom

wavefunction. a

m cm  m cm m cm

1 0M33729424 8 4.3290467 x 10-3 14 6.2740944 x 10-6

2 0.08088340 9 7.8697645 x 10-4  15 -6o3829315 x 10- s

3 -0.21312975 10 -l17755868 x 10- 3  16 -1.8442313 x 10-4

4 0.02003854 11 -7.4084122 x 10-4 17 1.5585701 x 10-5

5 -002871601 12 1.6305837 x 10-6 18 6.4835063 x 10-

6 -0M01543812 13 -2.7310618 x 10- 4  19 6.8860244 x 10- 4

7 -9.2189670 x 10-3

a ao = Ne-1/2ks[1 + clu + c2t2 + c3s + c4s 2 + c5u2 + c6su + C7t2u

+ c8 u
3 + c 9 t 2 u 2 + clOSt 2 + c1 1 s

3 + c 1 2 t 2 u4 + C 1 3 U
4 + C4U5

+ c 1 5 t 2 u 3 + C1 6 S 2 t 2 + C 17 S
4 + c 1 8 t 2 u + c 1 9 t 4 ] ,

where, N = 0.07164092 , k = 1,35 , The coordinates, s, t, and u

are defined in terms of rl, r2 , and r12 by:

s = rl+r 2 , t = r-r 2 , and u = r12
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For these calculations, the form of the Fnz's for the helium

atom was taken from a calculation of the hyperpolarizability of

helium. 4  It consists of the following functions:

S-symmetry: (rn- 2 + rn - 2 )lao> 2 < n < 4

(rm- 2 + rm- 2 )r l r 2 cose 1 2 1a0> 2 < m < 51 2

P-symmetry: (rn- 1 z + rn-1 z2 )lao> 1 < n < 6

D-symmetry: (rn-2 (Z2 - /3r2) + rn- 2 (Z2 - 13r2))Ja > 2 < n < 41- 1 122m<5

(rm-2 + r 2 )(ZZ2 z 1/r r2 cose 12 )ja0> 2 < m < 5

In order to obtain a final basis for the helium atom

calculations, the convergence of A and A' was monitored, along

with that for the atomic hyperpolarizability, polarizability, and

C6 coefficient. The first of these atomic properties allowed an

assessment of the completeness of that part of the resolvent with

S- and D-symmetry. The second and third of these additional

properties serve to test the completeness of the P part of r0 .
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In the latter case, the utility of these specific properties as test

properties is especially pronounced, because one obtains a rigorous

upper bound to both the polarizability and the C6 coefficient

corresponding to the Hart-Herzberg a0 , as they each correspond to

a second order energy. The final basis set was obtained by varying

the number of functions of each symmetry type until convergence for

all these quantities was achieved. The convergence of the atomic

hyperpolarizability, Yo , A6 , and A as a function of the

number of terms in the basis set is given in Table 11.3.

Besides testing the accuracy of our calculation in the above

manner, sum rule checks were employed to test the internal consistency

of our calculations. It has been shown by Dalgarno and Epstein 49 that

if o is an exact eigenfunction of ho , and if the basis set for

a variational calculation of the states of ho contains the function

o , then the following sum rule holds:

SI<0 oI o>I2  = <0 0oio21o> . (2.51)
n

In our case, the Hamiltonian matrix for the linear variational method

was constructed as if the Hart-Herzberg wavefunction was exact. That

is, the Hamiltonian matrix is that which refers to 0 . Hence, if

our calculation is numerically precise, and internally consistent,

the above sum rule should hold for operators 0 , which are of the

form of our F n's Since the Fn 's were different for each
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symmetry, the numerical consistency of each part of the calculation

could be independently tested. The results for the sum rule checks

which we performed are given in Table 11.4.

In Table II.5,we present the results of calculations for

expectation values of various radial operators. The good agreement

between the results obtained by using the Hart-Herzberg ground state

wavefunction and those obtained through the use of the very accurate

(1,078 term) Pekeris wavefunction s5 o testifies to the good quality of

the former, and justifies the method which we used to compute the

matrix elements of the Hamiltonian.

All the integrals needed in this calculation were obtained using

the method of Calais and Lo6wdin. 5 1 For the most part, their method

can be used without modification. However, for certain of the

integrals needed in the construction of the Hamiltonian matrix,

modifications had to be made. The analytical evaluation of these

integrals is discussed in Appendix B.

For the hydrogen calculations, the basis functions nk for

the excited states were taken to be of the form,

n = Fn '0

where

Fn = rn Y (r)
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Table 11.3. Convergence of yo , A6 , and A6  for He, as a

function of the number of terms in the basis.

S Type P Type D Type

N N2  N3  N4  N5  Y A1 A6

5 0 5 5 0 38.9 54.98 25.61

3 3 6 3 3 38.7 57.71 26.56

4 3 6 4 3 42M5 60.09 2842

5 3 6 5 3 42,6 60.09 28.43

6 3 6 6 3 42,6 60.09 28.43

4 4 6 4 4 42.5 60.09 28.43

5 3 7 5 3 42,6 60.09 28.43



Table 11.4. Sum-rule check for the operator 0 (see Eq. (2.52)).

2 2 2 2 22

Sr 1+r2  r+r 2  z +z2-3(r 2+r2) z1 2  1 2 COS 12

1I<0101n>l2  0.32155684 0.82473581 0.75239640 0.62955186 0.35870841

<010210> 0.32155688 0.82473588 0.75239638 0.62955184 0.35870840

a.'



Table 11.5. Calculation of properties of a ground-state helium atom; all properties in atomic units.

Ne is the number of electrons, C6  is the coefficient of the R-6 dispersion energy,

so is the static polarizability, Yo is the static hyperpolarizability.

Property C6  a0o Yo <r1+r2> <r*r> N EO)

Value, 1.458 1.379 42.6 2.3867 -0.064736 2.0000000 -2.9037179
this calc

Accurate 1.4605 ± 0.0025a  1.380 ,b 42.8,d 2.3870f  -0.064737f  2 -2o9037244
value 1.383c 42.6 e

43.1

a M. H. Alexander, J. Chem. Phys. 52, 3354 (1970).

b W. D. Davidson, Proc. Phys. Soc., (London) 87, 133 (1966).

c Reference (7).

d M. W. Grasso, K. T. Chung, and R. P. Hurst, Phys. Rev. 167, 1 (1968).

e Reference (47).

f
Reference (50).

CA
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and

1 -r
IPo - e

Here PO is, of course, the exact ground state wavefunction. It

was found that n < 6 for each symmetry was sufficient to obtain

convergence for A1 and Ai

For the helium-hydrogen problem, the final basis sets for the

above respective parts were used together.

The values of A6  and A1 obtained in this calculation for

the H2, HeH, and He2 systems are given in Table 11.6.

After this work was completed, Buckingham et al. reported the

results of a variational calculation of both A6 and A8 for H2 .
5 2

This calculation was virtually identical to ours in method, and

their A6 results are in excellent agreement with ours. For

reference, we include these results, those of reference (44), the

point dipole, and the Uns6ld results in Table II.6.

If the results of Table II.6are used to compute a value of B

for helium, a positive value again results. Thus, one concludes

that calculations which take only long-range interactions into

account are not sufficient. This means that, not surprisingly, the

overlap region contributes significantly to the measured value of

B , so that a(R) must be computed over the entire range of R if

a meaningful value of B is to result.
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Table Ii.6. Accurate and approxmate values of A and A for H,Tabe 1.6 Acurae nd ppoxmte ales f 6 an 6 for H2,

HeH, and He2; units of A6 are ao , units of A8 are ao

H2  HeH He2

A6(accurate)a 2558.59e 517.472 60.0922
(2558.59)c,

e

A (accurate)a 1268,25e 258.871 28.4308
(1268.25)c,e

A6(point dipole) 729.000 146.451 21.1620

A6(point dipole) 182.250 36o6129 5.29050

A (Uns61d)b 1030.85 20.0874

Ab(Unsold) 552.445 10.4157
A6 CUnod
A8 90639.5

1 c
A 22010.3

a The number of figures reported in this table corresponding to the

accurate calculation (see Eq. (2.48)) reflect the numerical precision

obtained. Except for the H2 calculations, the error introduced

through the use of ho (see Eq. (2.50)) results in about four

significant figures of accuracy.

b Reference (18).

c Reference (52).

e9e Reference (44) reports A = (A6 + 2A6)/3 to be .1698 a00



CHAPTER III

POLARIZABILITIES OF DIATOMIC MOLECULES

IN THE OVERLAP REGION

From the results of the previous chapter, it is clear that

consideration of overlap effects is necessary if one is to accurately

calculate the incremental polarizability of two helium atoms. We

shall somewhat arbitrarily define the overlap region for helium to

span separations from 4a0 to 8a0 , which covers most of the van der

Waals well region. In the overlap region, we shall apply the

Hartree-Fock model to calculate the polarizability tensor of He2 at

four internuclear separations: 4, 4.7, 5.5, and 6.0 a0 . We shall

also show that the Hartree-Fock model reduces to the point dipole

model at large internuclear separations, where orbital overlap is no

longer important. Our results are presented in Sections C-F.

Before discussing our own work, we review previous calculations

of the helium pair polarizability in the next section, and review

coupled Hartree-Fock theory in Section B.

A. Previous Calculations in the Overlap Region

Early attempts at estimating the effects of overlap on the

polarizabilities of rare-gas diatoms paralleled those in the

66
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long-range region by employing model calculations. As an extension

of the long-range point dipole model, Levine and McQuarrie

represented a pair of interacting atoms by interacting metallic

spheres. 22 The long-range asymptotic limit of the resulting

polarizability is identical with that of the point dipole model

presented earlier. Their short-range results indicate a sharp peak

in the parallel polarizability at the point at which the spheres

come in contact. The physical basis for this effect is obvious,

since when the spheres touch, electronic charge can flow from

one sphere to the other. They then translate this modeled result to

mean that for real atoms overlap effects are indeed important. This

agreement with intuition notwithstanding, their resulting value for

B is positive for all cases, and greater than the point-dipoleS

result by about a factor of 2. Thus one concludes that, at least

for this problem, such classical modeling is not sufficient.

To consider a model with internal structure, DuPre and McTague

used the hydrogen molecule in its 3Y excited state to simulate
U

the behavior of a rare-gas diatom.23 The justification for this

simulation is that this first excited triplet state of H2 displays

the qualitative features of rare-gas diatoms in their ground states.

That is, the 3u H2 potential energy curve includes a short-range

(overlap) repulsive part with a long-range (R-6) attractive part;

this situation is characteristic of the rare-gas diatomic potential

curves. Also, in terms of molecular orbital configurations, triplet

hydrogen is a a , whereas singlet helium is 02 02
g u g u
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In the DuPre and McTague calculation, a one parameter variational

approximation to the solution of Eq. (1.6) was used:

T(F) = Y0(l + A(q1 + q2 )) , (3.1)

where T0 was chosen to be the Hirschfelder-Linnett wavefunction

for the 3 state of the unperturbed H2 molecule;52 here, q, and

q2 are the coordinates of electrons 1 and 2 , respectively in the

direction of the applied field. As was shown by Hirschfelder, the

components of the polarizability tensor of H2 , under these conditions,

are given by:53

S= 8(<x > + <xlX 2>)2 , (3.2)

= 8(<z + <zlz 2>)2 , (3.3)

where x, and z, are coordinates of electron 1 in the center of

mass system, with the z-axis lying along the internuclear axis, and

the < > denote an expectation value with respect to T0 . Eqs.

(3.2) and (3°3) are a generalization to molecules of the Kirkwood

approximation for atomic polarizabilities, 54,62 and were shown to

give results of reasonable accuracy for the ground state of H2 . The

results for the u state of H2 showed that the increments of 1

were positive and a, were negative in the intermediate region, and
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that in this region, the mean incremental polarizability, Aa , is

negative. Thus, the second dielectric virial coefficient B is

less than that obtained from the dispersion models, and for some

temperature range could, in fact, be negative.

The qualitative explanation of the behavior of the incremental

polarizabilities is based on the notion that polarizability is

related to the size of the charge cloud. When the two atoms overlap,

the electrons on one atom can tunnel to the other nucleus, thereby

increasing the polarizability in the parallel direction. The same

effect contracts the charge cloud in the perpendicular direction,

however, and decreases this component of the polarizability tensor.

For the case of the helium diatom, the Hirschfelder-Kirkwood

approximation takes the form

al = 4[<a JZ21g > + <uIz21°u> - 2<aglzlou> 2]2 , (3.4)

a = 4[<glx2 ljg> + <auI x2I Cu>] (3.5)

for a field-free wavefunction of the Hartree-Fock form,

T0 =  -a a I . (3.6)g g u u

As a preliminary to our main calculation, we chose for T0 the

Kestner wavefunction and evaluated Eqs. (3.4) and (3.5). The



Table III.1. Hirschfelder-Kirkwood approximation for the polarizabilities of He2 (see Eqs. (3.4)

and (3.5)).ab

R 2<a jz2 1 g> 2<a uJz2 1o >  2<a Jzll > 2<a g x 2 1 > 2<a Jx21 > a

1.0 0.7443 4.7418 1.1520 0.4507 1.4220 17.100 3.5446 5.567

2.0 2.3397 3.6952 2.1042 0.7797 0.7430 2.5832 2,3186 -0.089

3.0 4.9164 5.7783 3.0246 0.8241 0.7322 2.3916 2.4221 -0.084

4.0 8.5505 9.0511 4.0042 0,8184 0.7546 2.4586 2.4743 -0.027

4.7 11.6793 11.9986 4.7013 0.8079 0.7699 2.4828 2.4895 -0.008

5.2 14.2004 14.4096 5.1982 0.8021 0.7756 2.5240 2.4891 -0.005

5.5 15.8274 16.0043 5.5002 0.7998 0.7796 2.4948 2.4945 -0.001

6.0 18.7322 18.8489 6.0003 0.7949 0.7841 2.4885 2.4932 -0.004

S <alz2la> = 0.39494 2.4956 2.4956

a All entries in this table are in atomic units.

b The lo (Eq. (3.6)) is that of reference (41).

D
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results are shown in Table 3.1. It is seen that this approximation

gives negative values for As in the region of the van der Waals well.

To proceed beyond these model calculations, several workers have

applied Hartree-Fock theory.24,26,27 The first Hartree-Fock

computation of the polarizability of the helium diatom was carried

out by Lim, Linder, and Kromhout.24 Their calculation used a Gaussian

basis set and was unable to produce a negative value for the

dielectric virial coefficient, B . However, their calculated
C

asymptotic results also differed from the Hartree-Fock limit for the

separated atoms by about 25%. Thus, their calculation is of

questionable accuracy.

Buckingham and Watts have also used coupled Hartree-Fock theory

to compute an a(R) curve for He2 using a Gaussian basis set.2 6

They obtain negative values for the incremental mean polarizability

in the region of strong overlap. These negative contributions,

however, occur at too short a separation to produce a negative value

for B . Their results are plagued by instabilities in the values
S

of a(R) with respect to basis set variation. Tothis extent, the

authors themselves point out that their results should be regarded

as tentative, and no claim for attainment of the Hartree-Fock limit

is made.

Recently, O'Brien et al. have also published results of a

coupled Hartree-Fock calculation of the polarizability of He2 .27

Their calculation was similar in motivation and method to ours, so
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that a discussion of their results will be deferred to the final

section, at which time a comparisor of results will be presented.

B. Coupled Hartree-Fock Perturbation Theory

Langhoff, Karplus, and Hurst have reviewed several of the forms

of perturbed Hartree-Fock theory currently in use.5 6 The method

which was used in our work is known as the coupled Hartree-Fock

perturbation method (method a of reference (56)).

The Born-Oppenheimer Hamiltonian, in atomic units, for a pair

of helium atoms relative to an otlgin at the center of mass, in a

constant, static electric field F is given by:

4 4 4
H -(2 V - ( 2+ V I + V riF (3.6)

i1 i= iA riB i>j ij

where R A and R B represent the position vectors of the nuclei,

Invoking the Hartree-Fock approximation fcr this case involves the

assumption that the eigenstates of H can be represented by a

single determinant of orthonormal spin orbitals:

S= det[xl(1) X2(2) X3(3) X4(4)] , (37)

where the spin orbitals x are to be chosen by minimizing the energy

functional, Eq. (1.22). The derivation and use of the resulting

one-electron (Fock) equations is well known for the unperturbed
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problem.39 To extend the formalism to the problem at hand, we need

only note that since the perturbation is a symmetric sum of

one-electron operators, it will carry through the usual Hartree-Fock

derivation in the same way that the nuclear attraction terms do in

the unperturbed case. One then obtains the perturbed canonical

Hartree-Fock equations:

(h(1) + rl.F- c.)xi(1) = 0 , i = 1,2 , (3.8)

where h(1) is the one-electron Fock operator:

2V2~ ~ - < r-1 (I - PI2)Ixj>2

h(1) = -1/2V
2  rl- rl B + j <x Irl2 1 - X

1A r1B j=1i
(3.9)

and c. is the perturbed orbital energy. The subscript "2" on the1

fourth term means that one integrates the indicated expression over

the coordinates of electron 2 only. For helium, Eq. (3.8) represents

a pair of coupled integrodifferential equations for the orbitals

x, and X2 . The solution of these equations can be approached

either directly or by using perturbation methods.

With the direct method, one leaves the electric field explicitly

in the Fock equations. This means that the perturbed Fock equations

differ from the usual unperturbed Fock equations only in the electric

field term. Thus, a standard Hartree-Fock program can be used for
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the field-dependent problem with a relatively small number of

modifications. This method was first used by Cohen and Roothaan 57,s58

in atomic polarizability calculations, and is known as the finite-

field method; it is the one used in our work.

In using the perturbation method to solve Eq. (3.8), one

proceeds as in Chapter I, and introduces the expansions:

i + F (1) + , (3.10)
i=X i  Xi  ooo

and

(0) (1)
E. = i + F E + o , (3.11)

into Eq. (3.8), and, using the usual linear independence arguments,

one gets, to zero and first order respectively:

[h( ) )X() = 0 , (3.12)

and

[ho(1) - (0)]x( 1 ) () - [rlq + X()

4
+ [<x( 1)IrI (1 - P12)JX 0 )>2  (3.13)
j=1 3

+ <x()Ir-l (1 - P12)Ix()> 2 ]x(0 ) = 0
j 4
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where

ho(1) = r 2 + I ((r (1- Pz) 2

r1lA lB j1

(3.14)

and r1q refers to the component of ri in the direction of F .

Eq. (3.13) represents a set of coupled integrodifferential equations

for the first order contributions to the perturbed orbitals and

energies.

To obtain the polarizability using these two methods, we refer

back to Eqs. (1.5) and (1.24). The field-dependent dipole moment

for He2 in the Hartree-Fock approximation is given by:

<> = <(F)J IJ(F)> , (3.15)

where i(F) is defined in Eq. (3.7). Denoting the orthonormal

closed shell a-spin orbitals for the field-dependent problem by

Xi and X2 , we see that Eq. (3.15) can be written as:

<p> = 2<xiJilxi> + 2<x 2Ii11x 2> . (3.16)

This expression is used directly in the finite-field method by

extrapolating the ratic p/F to zero field. For use with the

perturbation method, Eq. (3.16) can be written:
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(0) (1) (0) + (F1)
<Ii> = 2<i + F (1) + I.. ixi0  + F (1) + ,-

+2<x2 1 0 + F x2 + +F + 2> (3.17)

= 4F[<X()j11×x(1)> + <x (0)jjiIx )>] + O(F2)

Here, we have used fact that the dipole moment of the free He2 diatom

is zero. Differentiating Eq. (3.17) with respect to F , and

evaluating the result at zero field yields the following

expression for the polarizability:

2
qq = 4 <X(1) I x(0) (3.18)i=1 i 1q I

In both the finite-field and perturbation methods, exact

solution of the Hartree-Fock equations is not in general possible,

so that one makes use of basis set expansions to obtain analytical

solutions. That is, in the finite-field method, one uses the

Hartree-Fock-Roothaan procedure by introducing a basis set expansion

for the field-dependent orbitals xi * This converts Eq. (3.8) to a

set of coupled matrix equations for the expansion coefficients. In

the perturbation method, one converts to a matrix scheme by

introducing a basis set expansion for the first order orbitals,

(1) X .The resulting coupled matrix equations are solved iteratively

in either case. It is readily seen that for small field strengths,

the two methods are equivalent.
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In both the finite-field and perturbation methods, one begins

with a zero-order Hartree-Fock wavefunction which, except for certain

atomic cases, is itself obtained by the Hartree-Fock-Roothaan

procedure. The basis sets used in such calculations usually consist

of either Slater type functions (STF) or Gaussian type functions

(GTF). The STF sets are generally more efficient than the GTF,

with the size of the latter often being three or more times larger

than the former for the same accuracy.

The symmetry of the zero order basis functions is dictated by

the molecular orbital correlation diagram for the particular

molecule of interest.59 The set of functions which one introduces

to reflect the distortion of the zero order wavefunctions by the

electric field is known as the polarization set. For polarizability

calculations, the symmetry of these functions is chosen to be such

that they couple to the zero order molecular orbitals via the dipole

moment operator. Sitter and Hurst have this discussed this problem

for calculations of atomic hyperpolarizabilities. 60

In view of the expansion nature of the solutions of Eq. (3.8),

it is important to ask how the result obtained compares to that

which would be obtained if the Hartree-Fock equations could be solved

exactly. This latter limit is referred to as the Hartree-Fock limit,

and it corresponds to the use of an infinitely large basis set. The

difference between it and the analytical result is known as the basis

set error, and is exactly known only for atomic calculations. The
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"art" of carrying out such computations, therefore, involves the

minimization of the size cf the basis set used, while, at the same

time, getting as close as possible to the Hartree-Fock limit result.

For field-free diatomi molecules, this problem is considered to be

solved, and Gilbert and Wahl have illustrated it in detail for the

He2, Ne2, and Ar2 rare-gas diatoms. 61 Additional references to this

problem and its solution for field-free calculations can be found in

Chapters I and III of reference (63).

The method which we used for the selection of the perturbed

basis set will be discussed in the next section-

From a formal point of view, the finite-field procedure is the

same whether one is discussing atoms or molecules. From a

computational standpoint, however, this is no longer true because

of the additional amount of work that one must do in computing and

processing the requisite two-center, two-electron integrals. For

this reason it is desireable to recast the above procedure to take

advantage of optimized computer codes which currently exist.

The program which we used in our calculations is a modification

of the BISON computer program of A. C. Wahl, P. J. Bertoncini, R. Land,

and K. Kaiser of Argonne National Laboratoryo64 The modifications are

those required for field-dependent calculations, and are discussed in

more detail in Appendix C.

The basic change needed involved the introduction of the

appropriate products of the dipole moment matrix elements and the
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electric field strength in the one-electron contributions to the Fock

matrix. Since the field variation was done in the SCF part of the

program, unit field strengths were used in the one-electron integral

calculations; this means that the integrals need to be computed only

once per each R value considered. This was especially important

in that convergence problems which appeared in the calculations of

al(R) , made it necessary to turn the field on slowly.

For basis set variation purposes, auxiliary programs were

written to remove those one- and two-electron integrals which

involved a given basis function from a "master" integral tape. This

allowed step-by-step basis set reduction to be performed using the

integrals corresponding to a single, large set. One, of course,

must be careful to guarantee that the cost of computing the integrals

for the large set is less than the sum of the costs of the individual,

smaller sets.

Once the appropriately modified Hartree-Fock program was working,

the problem remained of delineating a basis set selection procedure

which would allow us to approach the Hartree-Fock limit economically.

The procedure which we used is discussed in the next section.

C. Basis Set Selection Procedure

In order to compute the Hartree-Fock limit for the polarizability,

one introduces basis functions which reflect the electric field

polarization of a zero-field Hartree-Fock limit wavefunction and
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carries out the Hartree-Fock-Roothaan prescription with this augmented

basis set. This procedure fo the polarizability calculation can be

capsulized as follows:

1. Obtain a field-free Hartree-Fock limit wavefunction using

the Hartree-Fock-Roothaan method.

2. Choose polarization functions for the above.

3. Redo the Hartree-Fock-Roothaan calculation with the zero-

order plus polarization basis set in the presence of an

electric field F . Compute the dipole moment p of the

resulting field-dependent wavefunction and extrapolate the

ratio u/F to zero field to get a .

We now assume that step 1 has been carried out. The choice of

a polarization set for a given field-free basis is a playoff between

two competing requirements:

1. The set must be flexible enough to adequately represent the

distortion of the field-free orbitals by the electric field.

2. The size should be minimized, within the above constraint,

so as to minimize the number of integrals which must be

computed.

The prescription which we used for the selection of polarization

functions will now be described.

As a first step, the polarization functions are chosen to

polarize individual field-free basis functions. For a given

normalized Slater orbital, (0) we define the orbital polarizability

by the maximum value of the second-order variational functional:
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a(e(l)) = -2< (1)J(H 0 - EO)J,(')> + 4<e(1) zP(o)>

(3.19)

where 0(1) is a trial polarization function, z is the polar axis

of coordinates, and H0  is an unperturbed Hamiltonian which defines

(0) .

H0  = -1, 2 - Cnr- 1 - [z(k+l) - n(n-l)]/2r 2 , (3.20)

EO= -C2/2, (3.21)

(0)= Nrn- 1 e- r Ym(e,4) . (3.22)

We expand @(1) as a linear combination of STO's and maximize

c(t(1)) with respect to the linear coefficients and the orbital

exponents. A general nodeless STO is the ground state of the

corresponding Ho , so that for a sufficiently flexible choice of

(1) , the maximization procedure yields the exact polarizability

of the ground state of Ho . Following the optimization of 4(1)

we generate a more flexible basis of polarization functions by

adding the STO's which represent P(1) , to the finite-field basis

individually; that is, we use the variational procedure to choose

optimum orbital exponents and principle quantum numbers for the

finite-field basis.
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If the procedure described in the preceding paragraph is

followed to polarize an extended field-free basis, a linearly

dependent basis set is usually obtained. Even if the linear

dependencies are removed, we have found that the basis is much

larger than is necessary to give converged results for the molecular

polarizability. We then consider the following modifications to

reduce the size of the polarization basis:

a. Primary attention is paid to polarizing the STO's which

fall into the following categories: those which are dominant in the

field-free orbitals; those which are the most polarizable; and those

which constitute a leading contribution to the tail of the orbitals.

b. The less dominant basis functions are polarized collectively.

Let () and (O) denote two STO's which have expansion

coefficients cp and cq in a field-free occupied orbital, and let

1)and 1) denote their polarization functions. Then we

construct a new polarization function e , which also is represented

by an expansion in STO's, in a weighted least-squares sense. We

minimize

f Ie~) - 4(1)(()J2 dT , (3.23)

where
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()(1) (1)S = a c ) + a c ( , (3.24)
P P P q q q

a = (1))/[(¢(1)) + a((1))] . (3.25)
P P P q

The optimum expansion functions of a give a smaller set of STO's

to add to the polarization basis than the two functions (1) and
P

Staken individually.

Other factors affecting the choice of basis functions depend on

the case under consideration and are discussed below.

D. Test Calculations

Before computing the polarizability of He2 , we obtained the

polarizabilities for the united and separated atoms, Be and He,

respectively, in order to test our procedure for basis set selection;

the idea being to obtain the coupled Hartree-Fock limit for the

polarizability of these atomic limits. The results for the atomic

tests are given in Table 111.2. These results agree quite well with

3the accepted coupled Hartree-Fock values (a(He) = 1.322 ao

a(Be) = 45.5 ao) 57,58,65

The atomic basis set selection followed closely the procedure

outlined in the previous section. The field-free basis for Be is

taken from Clementi66 while that for He is taken from Kestner.4 1 The

3p orbital exponent in the He atom calculation was selected by

variationally solving Eq. (3.19), for each 2s basis orbital, using a
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two-term basis set (2p,3p) for o(1) ; the combined result was then

fitted to a single 3p via the least-squares procedure (see Eq. (3.23)).

For the Be atom, the selection of candidates for collective

polarization is not clear-cut, because the second occupied orbital

has a dominant contribution from the 2s orbitals, while the first

has a dominant contribution from the Is orbitals. Thus, these

orbitals were polarized separately.

In addition to these atomic limits, a series of test calculations

were performed on the hydrogen molecule, at an internuclear separation

of 1.402 ao , These tests were made both to check the modified BISON

program and to examine features of the finite-field method and our

basis set selection procedure peculiar to a diatomic example.

The program checks were of two types: the first involved a

comparison with a coupled Hartree-Fock calculation which was carried

out by hand; and the second involved the duplication of results

obtained by other workers who used the iterative method.

The former check is possible without iteration because H2 has

an electronic configuration which can be represented by 1o2 , so that
g

there is only one perturbed orbital, l(1 ) , hence only one equation

of the form of Eq. (3.13) to solve. This means that expansion of

l(1) in a Slater basis set leads to a single matrix equation of

the form:

Ac = b , (3.26)
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which is solved by inverting the matrix A . The second method

involved the duplication of the coupled Hartree-Fock H2 polarizability

calculations by Caves and Karplus 67 and Gutschick and McKoy.
68

For the first test, Eq. (3.13) for the field perpendicular to

the internuclear axis can be written:

[- 2V 2 1 + <aoor-1IoO> 2 _Co]alrA riB 1(3.27)

+ [Xl + 2<a 0|r1JCi>2 - COO = 0

Here, el is given by (a0ojja 0o0) . If we now introduce the

expansion,

01 = I cK K (3.28)
K

into Eq. (3.13) we obtain Eq. (3.25), with,

ALK = [<I IIv > + - 1 > -

ALK L 1 rA r1B K> + ( 0LK) L<lK

(3.29)
+ 2(o0LJ04K) ,

and

bL = -<GolXIL> . (3.30)
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The required integrals were computed using the two-center integral

program of H. F. Schaefer III. The results of this check for a

are given in Table III.3 The minor differences reflect the (arbitrary)

convergence tolerance of 10-5 for the coefficient vectors in the SCF

part of BISON. This check lends confidence to the correctness of our

working version of BISON.

To further check the program, we used the basis set of Caves

and Karplus, and computed a,, and a, for H2 at R = 1.40 ao .

The results are given in Table III.4. Again, the slight discrepancies

result from differences in numerical parameters used in the

respective calculations. These results serve to re-enforce the above

conclusions regarding the accuracy of our working version of BISON.

A further concern which one has in using the finite-field

method is that hyperpolarizability terms can contribute to the

computed value of the dipole moment. If these additional effects are

not correctly interpreted and accounted for, erroneous results for

the polarizability will be obtained.

For a calculation in which the polarizability is the only

quantity of interest, the hyperpolarizability terms can be removed

by using a sufficiently small field strength. However, the field

strength must be kept large enough so that the computed dipole

moment has numerical significance. The particular value of the

field strength used in these calculations was .001 au . This value

was chosen by test calculations on both H2 and He2,
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Table 111.2. Basis sets and polarizabilities for atomic helium and

beryllium.

Atom Field-Free Basisa Polarization Basisa Polarizabilityb

ls(1.450) 2p(l450)

He 2s(lo641) 3p(1.450) 1.322 a3
0

2s(l.723) 3p(1.655)

ls(3.3370) 2p,3p(3.3370)

ls(5.5063) 2p,3p(5.5063) 3
Be 45.574 a

2s(0.6040) 2p,3p(O.6040) 0

2s(l.0118) 2p,3p(lo0118)

a Slater-type basis. Orbital exponents given in parentheses.

b Here ao is the Bohr radius.



Table 111.3. Comparison between the first order perturbed orbital for H2 at R = 1.40 ao computed

using Eq. (3.27) and that obtained from BISON.a

aA a  A1 2  A22  b, b2  F cl c2

Eq. (3.27) 2.4111 2.4658 3.5624 -1.1667 -1.0919 0.025 -0.01458 0.00243

BISON --- --- --- --- --- 0.025 -0.01457 0.00243

a In the basis set definitions, the subscripts A and B refer to the respective centers:

ao = -3.6218oI - .1775902 - .0281703

01 = xloo(l.06)A + xlo0(1.06)B

02 = x100(1.43)A + X100(l.43)B

03 = X210(1.82)A + X210(1.82)B

a = c1 04 + c! 05

04 = [Ix211(.935)A+x21-1(o935)A + X211(.935)B + X21-1(o935)B]

0 = [x211(.509)A + X21-(1.o509)A + X211(1.009)B + X21-1(1509)B]

The x's are defined by Eq. (3.22).
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Table 111.4. Coupled Hartree-Fock polarizabilities and basis sets

for H2 at R = 1.40 .

Field-Free Basisa Polarization Basisa Polarizability

ls(l .06) 36°478 ao

a ls(1.43) 2pa(0.945) 0
(6.478 a)b

2pa(l .82)

1s(l .06)
a. ls(l.43) 2 p (0.935) 4.601 a3

a 1s(1.43) 7

2p (1509) (4.602 a3)b
2pC(1.82)

a Numbers in parentheses are the orbital exponents used, with a

Slater-type basis centered on the respective nuclei.

b Reference (67).
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Table 111.5. Coupled Hartree-Fock ratios at <px>/F , for H2 at

R = 1.402 ao a

F px(F)Ib Ix(F)llc

0.005 4.290 4.290

0.008 4.289 4.290

0.010 4.289 4.290

0.025 4.281 4.292

0.050 4.253 4.294

a Units of field strength are atomic units, units of px/F are

a3 .

b I refers to the basis set: ls(I.197), 2p w(1.050), 3p (1.197) on

each center.

c II refers to the above basis set (b) augmented by the function

3dA(1.197) on each center.
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The hyperpolarizability of a diatomic molecule will depend on

basis functions of Z , 7 , and A symmetry. Thus if one hopes to

extract hyperpolarizability information from a finite-field

calculation (this capability makes the finite-field method

attractive), basis functions of all the appropriate symmetries for a

given direction of the applied field must be included. Failure to

do so can result in the wrong sign for the hyperpolarizability, as

evidenced by the H2 data of Table 111.5.

In addition to the tests described above, we repeated the test

calculations of Gutschick and McKoy on H2 , and verified their results.

E. Helium Diatom Calculations

For our calculation of the polarizability of the helium diatom,

the field-free wavefunction of Kestner was chosen.41 This

wavefunction is defined in terms of a Slater orbital basis set, with

orbital exponents optimized at each internuclear separation. The

basis set error in Kestner's calculation, as inferred from the

extremely accurate calculation of Gilbert and Wahl, is about 1 part

in 107 for the energy. A reduction in the size of this zero-order

set can be justified only by numerical experimentation.

For the purpose of calculating statistical averages, one is

interested in the polarizability for those internuclear separations

for which the statistical pair distribution function is non-zero.

As will be seen later, this implies that the smallest internuclear
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separation for which we need to compute a is about 4a0 . Thus,

for this range of separations, it is reasonable to attempt to achieve

a reduction of the size of the basis set by experimentation at

R = 4ao , and assume that the results are valid for larger separations.

In the H2 test calculations, it was observed that it was

unnecessary to include basis functions which polarize the 2p

zero-order basis function. This is presumably due to two effects:

the 2p0  does not easily distort in a direction perpendicular to

the orbital axis, and the coefficient of the 2p in the zero-order

occupied orbitals is small relative to those of the s-type basis

functions. For the case of He2 , the coefficient of the p-type basis

functions is less than .5% of the coefficients of the s-type functions,

for internuclear separations greater than or equal to 4a0 . Thus, it

was assumed at the outset that for the calculations of a , the 2p

need not be polarized.

The zero-order basis set for R = 4a0 , is given in Table III.6.

From this table, it is seen that for a calculation of a

a reasonable initial polarization set would consist of the following

functions on each center:

2p+(1.458) , 3p+(1.458) , 2p±(1.175) , 3p±(1.644) .

The last two polarization functions represent collective polarization

of the two 2s zero-order basis functions. Since the zero-order set
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Table 11.6. Field-free basis set for He2 at R = 4.0 ao

Basis a  Field-Free Basis

Is(1.458)

2s(2.631)
1

2sio1723)

2p (1,748)

a Slater-type functions centered on nuclei A and B Orbital

exponents given in parentheses.
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consists of eight functions, this yields a total of 24 basis functions,

or 45,150 two-center, two-electron integrals which need to be computed.

The systematic reduction in the basis set size for R = 4ao  is given

in Table III.7. The most noticeable conclusion warranted by these

results is that in the calculations of a, , the 2p basis function

does not have to be included. This result coupled with the collective

polarization of the two 2s functions by a single 3p yields a basis

set of 18 functions, or 14,706 two-center, two-electron integrals.

This corresponds to a 65% decrease in the cost of computing each point

on the aI(R) curve (with calculations done in double precision on

the UNIVAC 1108).

For the parallel direction, a set of 18 basis functions was used

for size-consistency with the calculations for the perpendicular

direction. The size here represents a linear independent combination

of an essentially complete polarization set; for the purposes of this

calculation, the linear independence criterion which was adopted was

that the smallest eigenvalue of the overlap matrix could not be less

than 10-6 . The specific polarization sets and the results for the

polarizabilities are given in Table 111.8 (al) and Table 111.9 (a 1 ).
The mean incremental polarizability, Aa , which is computed from the

data in these tables is plotted in Figure III,1. The cross-hatched

area in this graph reflects our estimates of the basis set error in

the polarizability calculations, and will be discussed in Chapter V.

From the data of Tables 111.8 and III.9, it is apparent that,

in the overlap region, a 1 first increases and then decreases as
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the internuclear separation decreases. This is opposed to the trend

for the corresponding aL values which decrease monotonically with

decreasing R . Hence, our results indicate that the incremental

parallel and perpendicular polarizabilities have opposite signs for

the range of internuclear separations which we have considered.

This, as noted in references (23) and (37), is in accord with the

general features of the polarizability curves which are necessary to

obtain agreement with the dielectric constant experiments. The Kerr

effect experiments, on the other hand, are affected by the variation

in the anisotropy as a function of R . Our computed B(R) curve

is given in Figure III2, and will be discussed later.

In order to cast this data in a form which is useful for the

property calculations, we fit the incremental mean polarizability,

AU(R) and the anisotropy B(R) to the following forms:

Aa(R) = -12.9exp(-1.45)R + .OO116a (3.31)

and R < 6.5a 0

B(R) 011 -l e= -- 6ao R- - 42.5exp(-1.645R)

For internuclear separations greater than 6.5a 0 , we used the

asymptotic results:
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Table 111.7. Basis sets and perpendicular polarizabilities for

diatomic helium, R = 4.0 ao

Basisa Field-Free Basis Polarization Basis Polarizabilityb

1s(l.458) 2p+(1.458)

2s(2.631) 3p+(1.458) 31 2°570 a
2s(1.723) 2p+_(1.175) 0

2po (1.748) 3p4 (1.644)

1s(l.458) 2p+(1.458)

2s(2.631) 3p4 (1.458) 3
2 2,570 ao2s(1.723) 2p+(1.175)

3p+(l .644)

1s(I.458) 2p+(1.458)

3 2s(2.631) 3p+(1.458) 2.570 a 3
0

2s(I.723) 3p+(1.644)

a Slater-type basis centered on nuclei A and B . Orbital

exponents given in parentheses.

b Here a is the Bohr radius.Here an is the Bohr radius°
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Table 111.8. Basis sets and parallel polarizabilities of diatomic

helium.

R(ao) 4.0 4.7 5.5 6.0
Basis

4-

Orbital Exponents

Is 1.458 1.454 1.450 1.451 1.450

2s 2.631 2.635 2.630 2.638 2.641

2s' 1.723 1.723 1.721 1.720 1.720

2p 1.250 1.250 1.250 1.250 1.250

2p 1.458 1.454 1.450 1.451 1.450

3pe 1.458 1.454 1.450 1.451 1.450

3p0  1.655 1.655 1.655 1.655 1.655

3d 1.458 1.454 1.450 1.451 1.450

4d 1.458 1.454 1.450 1.451 1.450

Parallel Polarizabilities (a0)

(a) 2.675 2.685 2.681 2.672 2.644

(b) 2.678 --- 2.681 2.675 2.650

(a) This work. Here a0  is the Bohr radius.

(b) Gaussian basis set results of reference (27).
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Table 111.9. Basis sets and perpendicular polarizabilities of

diatom helium.

R(ao) 4.0 4.7 5.5 6.0
Basis

Orbital Exponents

Is 1.458 1.454 1.450 1.450 1.450

2s 2.631 2.635 2.630 2.641 2.641

2s' 1.723 1.723 1.721 1.723 1.723

2p± 1.458 1.454 1.450 1.450 1.450

3p± 1.458 1.454 1.450 1.450 1.450

3p± 1.6550 1.6550 1.6550 1.6550 1.6550

Perpendicular Polarizabilities (ao)

(a) 2.570 2.602 2.623 2.628 2.644

(b) 2.582 --- 2.630 2.635 2.650

(a) This work. Here ao is the Bohr radius.

(b) Gaussian basis set results of reference (27).



99

Figure III.1. Mean Incremental Polarizability, Aa(R) , for He2,

as a Function of R
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Figure 111.2. Anisotropy in the Polarizability Tensor, B(R) ,

as a Function of R .
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Aa(R) = 4a3 R-6  (3.33)

and R > 6.5a0

a(R) = 6 2 R- 3  + 12.07R -6  (3.34)

The successful use of an exponential function to fit our

computed mean incremental polarizabilities in the overlap region

bears no special physical or mathematical significance. In fact,

attempts at fitting the computed parallel and perpendicular curves

individually, using a similar functional form, were unsuccessful, so

that one cannot justify the use of an exponential fit to our data on

any grounds other than convenience. Here, ao is the computed

atomic polarizability of helium (1.322ao) . The use of the long-range

extrapolation is justified in the next section.

F. Extrapolation of the Hartree-Fock Polarization to the

Long-Range Region

Our calculations do not extend beyond an internuclear separation

of 6ao because the increment in the polarizability compared to the

atomic limit becomes zero to the accuracy of our calculation.

However, the asymptotic atomic limit of the coupled Hartree-Fock

polarizability can be derived without explicit calculation.
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It is well established computationally that the Hartree-Fock

potential energy curves for interacting closed shell atoms are

strictly repulsive and do not account for van der Waals (R-6)

binding. Qualitatively this occurs because the effective potential

for the localized orbitals on one atom is obtained by spatial

averaging of the instantaneous multipole moments of the other atom.

Since the atoms have no permanent multipole moments, the interactions

average to zero, leaving only the repulsive overlap forces as

nonvanishing.

In considering the incremental polarizability, a similar

situation occurs with the uncoupled Hartree-Fock method.5 6 ,6 9 Here

one calculates the polarizability of the field-free orbitals

separately, without allowing the remaining occupied orbitals to

simultaneously polarize. Hence, at long range where overlap effects

can be neglected, the polarizability of each localized atomic orbital

in the diatom is equal to its atomic value, and there are no

multipole contributions from the other spherical atom. The

asymptotic limit of the uncoupled theory is then, for either

component all or a ,

a(uncoupled) - 2&0 + overlap terms ,

where &0 is the uncoupled Hartree-Fock polarizability of the atom.
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A more interesting situation occurs in a coupled theory, 58 ,69

such as we have used. Here the polarizability of each orbital is

computed with the orbital in the presence of the remaining polarized

orbitals. Thus, at large internuclear separations, a localized

orbital on one atom feels not only the external field, but also the

field due to the induced dipoles on the other atom. This picture

is reminiscent of the classical point-dipole model of the incremental

polarizability. In fact, we can show that the long-range limit of

the coupled Hartree-Fock theory gives precisely the point-dipole

model results; namely,

S~ 20 + 4 R- 3 + 8a R- 6 + , (3.35)

S 2 0 - 2a0 R- 3 + 2ao R 6 + .. , (3.36)

where &0  is the coupled Hartree-Fock polarizability of an isolated

helium atom. (We restrict attention to helium, although the results

of this section are general for interacting closed shell atoms.)

To prove Eqs. (3.35) and (3.36) we consider two helium atoms at

large separations R . The Hartree-Fock energy of the diatom in the

presence of an external field F may be written

E - 2h + J - 21 *F+ 2h + J - 21 .F + 4R- 3( *b - 3 P azbza aa a ~ b bb ~b -a b z

(3.37)
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where we have used a localized repreientetion of the wavefunction,

S= a(1)a(2)b(3)c(4) , and the orb ita a is centered on nucleus

A , We have retained only the iead~ing (R-) multipole interaction.

The various terms in Eq. (3,37) are enpectation values of the

corresponding operators; e.g.

a dPa la- ala:, , (3.38)

and

Jaa ala ala> , (3.39)aa a

where Ja is the Coulomb operatc,a

Ja a2(2)r- d "/ia2(2) d-r2  (3.40)

The Fock equation for the orbital a is obtained by varying

the energy E with respect to a , while holding the orbital b

fixed. Requiring the energy to be stationary results in the equation

[h + J - .F + 2R- 3(P - 3w ) - r]a = 0 (3.41)
a a -a - -b -a bz az

The proof of the point-dipole mode, now rests on showing that a self-

consistent solution of Eq. (3.41) has the form of a scaled atomic

orbital,
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a = a0 (cF) , (3.42)

where c is a constant to be determined. Here the orbital a0

satisfies Eq. (3.41) for R = By symmetry a similar solution

holds for the orbital b .

Let us consider two geometries. First suppose F is

perpendicular to the internuclear (z) axis; then Eq. (3.42) for b

gives

b <b lbb>/<blb> a p( F)cr . (3.43)

The leading term in p is one-half the atomic polarizability ao

while higher-order terms in F give hyperpolarizabilities,

Substituting Eq. (3.43) into Eq, (3.41) we see that the effect of

the multipole term is simply to scale the external field. Thus the

condition that Eq. (3.42) be a solution to Eq. (3.41) is

= [1 + 2p(cF)R- 3]-1 (3.44)

With this result for c , the dipole moment of the diatom is

2Pa + 2P = 4p(l + 2p R-3)-I F
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The diatomic polarizability is the leading term of the expansion of

the dipole moment in powers of F ; thus,

aL = 2ao0 (l + so R-3) - 1  (3.45)

This is the point-dipole result.

Similarly, an external field parallel to the internuclear axis

gives

al = 2a0(l - 2a0o R-3) -  , (3.46)

which is also the point-dipole result.

If higher multipoles are retained in Eq. (3.37), more complicated

expressions involving quadrupole polarizabilities, etc. are obtained.

This also occurs in the classical point-dipole model if field-

gradient effects are considered. Such terms do not affect the

polarizability through order R-6 , however.

In our computations using the finite field method, we did not

achieve sufficient numerical accuracy in the long-range region

(R > 6ao) to observe the asymptotic limits. Nevertheless, in using

the computed polarizability functions, it is legitimate to

extrapolate to large internuclear separations via the point-dipole

model.



CHAPTER IV

STATISTICAL METHODS

In Chapter I it was noted that, in addition to the polarizability

curves, all(R) and a (R) , the computation of the properties in

which we are interested require a knowledge of the function g(R)

for gaseous helium. This function is the density independent part

of the first term in a cluster development of the pair distribution

function; that is, it is the pair distribution function for a dilute

gas. For high temperatures, this simply involves a knowledge of the

interaction potential U(R) for a pair of atoms. In the low

temperature regime, however, things are not quite so easy, and one

needs to compute the so-called Slater sum, W2(q) , where q

represents a complete set of generalized coordinates.

The differences between the classical and quantum mechanical

cases arise because the state of a quantal system is specified by a

wavefunction, rather than the exact values of the coordinates and

momenta, as it is in classical mechanics. In addition, it follows

that spin effects give rise to terms in the quantum mechanical g(R)

which have no counterpart in the classical expression. In fact, the

quantum mechanical g(R) can be written as a sum of two terms:

109
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g(R) = g(R)direct ± g(R)exchange , (4.1)

where the first term is the quantal g(R) for a Boltzmann gas, and

reduces to the classical Boltzmann factor in the limit of high

temperature. The second term represents spin effects, and is

associated with the Bose-Einstein (+) or Fermi-Dirac (-)

character of the gas. A discussion of this latter point has been

given by Yang and Lee, 70 and several workers have illustrated it with

mode' calculations. Larsen has computed the two terms of Eq. (4.i1)

for a gas of hard spheres; 71 Larsen, Witte, and Kilpatrick have

obtained results for 4He at low temperatures using a Lennard-Jones

12-6 pair-potential; 72 while Poll and Miller also used a 12-6

potential to compute gdir and gexchange for H2 gas for

temperatures in the range of 20 K to 800 K .73

The method used in this work to compute g(R) is that of Klemm

and Storer.74, 7s For high temperatures, one can approximate the

statistical density matrix p(R,R';$) (a = I/kT) , by expanding it

in powers of a , and neglecting terms which are greater than second

order in a . The density matrix, p , is then given by:

P = P (0) 1 , (4.2)

where the operators P, and p(0) satisfy the differential

equations



P2Hp 1  - , (4.3)

and

Hop(0) - (0) (4.4)
8 ' (4.4)

respectively, with boundary conditions

lim p(O)(R,R';a) = 6(R - R') = lim pl(R,R';a) . (4.5)
8 0 ... . 800 ~~

Here, H1  and H0  refer to a partitioning of the Hamiltonian of

relative motion, Hr , for a pair of particles. It is generally taken

to be the case that H, contains the interatomic potential term U(R)

of Hr

Once this high temperature limit has been obtained, one can

proceed to lower temperatures in a recursive manner, using the

following formula due to Storer:76 ,77

p(R,R';28) = f dR2 p('9, 2 ;a)P(R 2 ,R';B) dR2 , (4.6)

which is a matrix form of the operator relation

-2aH e-H e-SH
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If the assumption that the interatomic potential U(R) is

spherically symmetric is made, the eigenfunctions of Hr can be

expanded in terms of spherical harmonics, so that the density matrix

is expanded in the following manner:

00

p(R,R'; = R p 2(R,R';a) P (cosW) (4.7)
£=0

where P is the Legendre polynomial of order x , w is the angle

between R and R' , and p (R,R';B) is defined by the

differential equation,

211 2 - [(z+) + - V(R)]p = -P P (4.8)

where , is the reduced mass. The boundary conditions are:

lim p (R,R';8) = 6(R - R') for R,R' > 0 , (4.9)
8 0

and

pZ(R,R';a) = 0 for R,R' = 0 . (4.10)

These equations can be transformed to be compatible with the form of

Eqs. (4.3) and (4.4), by defining,
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H 0 2 + R (4.11)

and

H1 = U(R) , (4.12)

so that the analogues of Eqs. (4.3) and (4.4) are respectively:

PU(R)p - , (4.13)

and

P2,0) -£(+1) (0) ____)

pR2 R2 -P (4.14)

The solutions of this latter equation are the Z-th partial wave

contributionsto the free particle density matrix,

p)(RR';B)= ( 2i' 2 ) - /2 4/RR' exp[-(R2 + R'2)/(- )]i )RR'

(4.15)

where i. is the Modified Spherical Bessel function of the first

kind, defined by: 78

iz(z) = -z I Z2(z) . (4.16)
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Thus, we can make the initial high temperature approximation:

p (R,R';a) = e" 2  R  p(0)(R,R';B)e - (a ) U( R) , (4.17)

and extend this lower temperatures using Eq. (4.6), which for the

partial waVE expansion becomes:

p (R,R';2a) = F P(R,R2 ;)p k(R2 ,R'; ) dR2 . (4.18)
0

In practice, one evaluates the various functions over a finite grid,

so that Eq. (4.18) becomes an n x n matrix. Thus one can use a

Simpson's rule quadrature to evaluate the right of Eq. (4.18) to

reduce it to a square of the n x n density matrix. One then

proceeds to lower temperatures by performing standard matrix

multiplication.

The expression for gdir and gexchange for a given value of

S, in terms of the partial wave expansion are:

2r2B 3 2+I
gdir(R) = (---) 2 X p (R,R;a) , (4.19)£=0

and

9exchange(R) = (22)~2 (2S+l) 2  1( p (R,R;8)

20
(4.20)
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A detailed account of this method and a listing of the computer

program whichis used to carry it out, can be found in reference (75).

For the helium isotopes 3He and 4He (the masses used in this

work are respectively 3.0160 and 4.0026 amu ) low temperature

calculations of g(R) were made at T = 4K . To get down to this

temperature, a starting temperature of 1024 0 K was used, so that

eight iterations were required. The adequacy of this starting

temperature was established by comparison of our 4He results at 20 K

(9 iterations) with those of reference (72); agreement to at least

three places was obtained. In this work, we used a mesh size of
0

.025 (in units of a = 2.556 A ) at higher temperatures, and .10

at lower temperatures for the Simpson's rule integration of Eq. (4.18).

By numerical experimentation, we found that twenty partial waves were

sufficient for three decimal place accuracy. In this work, the

MDD-2 pair potential of Bruch and McGee was used. 12 This potential

combines a Morse potential for separations less that 6.96a0 , with

a dispersion dipole plus quadrupole result for separations greater

than or equal this core. The potential parameters for helium along

with the resulting asymptotic forms of g(R) are given in Table IV.

For future reference, a plot of the values of g(R) for 3He

and 4He at T = 40K is given in Figure IV.1, and the g(R) values

are listed in Table IV.2.
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Table IVM1. MDD-2 pair-potential and long-range g(R) for

helium.a,b,c

MDD-2 Pair-Potential:

I V(R)1 36.4778 15.0935
V(R) - R6 R R > R844085 -units

I V(R) = 10.75[e[2c(l -x )] - 2e[C(l-x)] d R < 1.44085 a-units
k

Long-Range g(R) Expressions:

g(R) : 1 V(R) ___ e
g(R) = 1 - V) 6m T V R > 3.1 a-units

3He,T = 40K g(R) = 1 + 911945 + 31.8405 21.6784
R6  + R8 RIO

4He,T = 40K g(R) = 1 + 9.11945 24.9223 16.3349
R6 R8  R10

a See reference (12).

b isobaieR is assumed to be in a-units (a = 2.556 A) , V(R) is obtained

in K .

c k = Boltzmann's constant = 1.38062 ergs/oK
dd x = R/1.8302 , c = 6.1277 .

e This expression is valid for large R values, the use of R = 3.1

a-units was chosen in our calculation by convenience.
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Table IV,2. Radial distribution functions for 3He and 4He at

T = 4*K a

R(o-units) g(3He) g(4He) R(o-units) g(3He) g(4He)

0.700 0.000 0.000 2.000 1.251 1.282

0.800 0.008 0.006 2.100 1.205 1.217

0.900 0.076 0.076 2.200 1.164 1.164

1.000 0.284 0.330 2.300 1.129 1.123

1.100 0.606 0.755 2.400 1.101 1.092

1.200 0.931 1.181 2.500 1.078 1.069

1.300 1.177 1.480 2.600 1.060 1.052

1.400 1.326 1.626 2.700 1.046 1.040

1.500 1.395 1.655 2.800 1.036 1.031

1.600 1.408 1.613 2.900 1.028 1.024

1.700 1.388 1.536 3.000 1.022 1.019

1.800 1.348 1.447 3.100 1.017 1.015

1.900 1.300 1.360

a l-unit 2.556
10-unit =2.556A
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Figure IV.1. Pair Distribution Functions for Helium at 4'K and

322 0 K as a Function of R
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CHAPTER V

RESULTS AND DISCUSSION

A. Results

A problem worthy of attack
Proves its worth by striking back.

--A Grook by Piet Hein

In Chapters II and III we have discussed the calculation of the

polarizability functions A( and a for the helium diatom. The

results of the calculation are summarized in Eqs. (3.31)-(3.34) and

in Tables 111.8 and 111.9 and Figures III.1 and .III.2. In Chapter IV we

have discussed the helium radial distribution function g(R) . which

is given in Table IV.2 and Figure IV.l. We are now ready to put

these results together to calculate the experimental quantities

introduced in Chapter I.

The macroscopic quantities are related to the corresponding

molecular properties through integrals weighted with g(R) . The

second dielectric virial coefficient B (see Eqs. (1.34) and (1.39))S

is an average of the mean incremental polarizability b . The

second Kerr virial coefficient BK (see Eq. (1.45)) is an average

of the anisotropy ,2 . The Raman depolarization ratio D (see Eq.

(1.58)) reflects both 6A2 and 82 , but is dominated by 8 . Thus
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the experimental quantities are complementary with respect to the

components of the polarizability tensor.

The integrals involved in B , BK and D were evaluated

numerically by Simpson's Rule quadrature. The final integration

grids were chosen by varying the number ef points in the grid until

further reduction of mesh size left the value of the integrals

unchangEd, to the number of places to which the results are reported.

The upper limit at which the integration was truncated was determined

in the same manner, It was found sufficient to use integration steps

of .04 a-units over the range .65 to 4.5. a-units. The B results

were checked by transforming the corresponding range of integration

to the interval [-1,1] , and numerical integrating the result using

a 64-point Gausian quadrature. The conversion factors from atomic

units to the experimental units is given in Appendix E.

The results of our calculations of B BK , and D are

presented in Table V.1. They are summarized as follows. Our

calculated value of B is within the rather large experimental

error bars at 322K. We are also in order of magnitude agreement

with the results at 4K, but we predict the isotopic dependence to be

opposite to that observed experimentall ; we shall discuss this

discrepancy in further detail below, where The quantities BU and

BL will be explained.

Our calculated BK at 300K verifies the null experimental

result. We predict that the contribution of the second v~rial term



Table V.1o Dielectric and light scattering properties of fluid helium.

Property T = 322 0 K T = 4°K
3He 4He

Second dielectric virial -.094 cm6/mole 2  -.025 cm6/mole 2  -.030 cm6/mole 2

coefficient, B. (-0.93 cm6/mole 2 )a (-.030 cm6/mole 2 )c (-.023 cm6/mole 2 )c
(-.06 ± .04 cm6/mole2)b

BU -.086 cm6/mole 2  -.012 cm6/mole 2  -.015 cm6/mole 2

BL -.135 cm6/mole 2  -.034 cm6/mole 2  -.041 cm6/mole 2
6

Second Kerr virial 2.4 x 10-15 esu 1.2 x 10-13 esu 1.4 x 10-13 esu
coefficient, BK (3.1 x 10-15 esu)a

Depolarization ratio for 4/3 + .37 5 + .08 + .07
Raman scattering, D /3 + . 4 4 a (1.33 ±+ .20) d

(1.39 ± .20)d

a Calculation of reference (27); temperature used was 300 0K.

b Experimental results of reference (la).

c Experimental results of reference (lb).

d Experimental results of reference (36).

dR
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to the observed Kerr constant of helium to be .1% at room temperature

and pressures of 50 atm., which is not observable. However at 4K,

the BK is larger than the room temperature result by a factor of

50, and the second virial term contributes 14%, at a pressure of

1 atm, Thus it may well be possible to detect the BK at 4K.

Our calculated value of D differs from the prurely geometrical

value of 4/3 by only 7%. Thus, it is not likely that Raman scdttering

from As can be observed by measuring depolarization ratios.

We turn now to a consideration of errors in our calculation.

In particular we wish to assess the significance of the discrepancy

with experiment in the isotopic dependence of BE at low temperatures.

The values of B. reported in Table V.1 were obtained using the

Hartree-Fock polarizability curve given in Eqs, (3.31) and (3°32),

Thus, the use of our computed Aa curve can be questioned on two

main points: there is a basis set error associated with the fact

the Hartree-Fock-Roothaan prescription is carried out with a

(necessarily) finite basis set; and, there is an inherent (correlation)

error associated with even the exact Hartree-Fock result. In Section B,

the former point is discussed, and our calculation is compared to that

of O'Brien et al. In Section C, the correlation error is discussed,

while Section D contains our conclusions.

With respect to errors in g(R) , we have pointed out that at

20 K, our g(R) values are in agreement with the calculation of
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reference (72) to at least three decimal places. Va ii o of

computational parameters in the direction which woUd e'ce a Mr-

accurate g(R) produced changes in, at worst, the cfift decfima

place, Further, the method used here was shcwn to give gcod values

of the second pressure virial coefficient in the ca cuatwons of

reference (74)

B. Basis Set Error

As has been pointed out in earlier chapters, one of the main

objectives of our work was to compute the Hartree-Fock T~mt fo, the

polarizability of the helium dimer for those ,itenvc e epC: tons

which contribute to certain experimental observabes.

By definition, the Hartree-Fock limit for a gfver pyoperty is

that which is obtained through the exact solution of the Ha,rtree Fock

equations. Except for field-free atoms, however, the HKatree-Fock

equations are generally solved as we have done, via basis set

expansion of the molecular orbitals, using the Hartree-Fock-Roothaan

scheme. This means that the Hartree-Fock limit corresponds to zero

basis set error in this analytical method of solution.

In terms of basis set selection procedures, the problem of

obtaining the Hartree-Fock limit for field-free diatomic molecules

is solved, and, in fact, actual calculations have been performed for

many diatomic molecules, including the one of interest here, He2,.6 1

From the viewpoint of perturbation theory, one should require that
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the Hartree-Fock limit of the perturbed problem should relax to the

field-free Hartree-Fock limit as the field is turned off. Thus, if

the effect of the field is to couple the zero-order basis

functions to functions of a different symmetry (this is the case for

fields applied perpendicular to the internuclear axis of a diatomic

molecule), it is clear that this can be accomplished by augmenting

the optimized field-free basis set with functions which describe

their distortion by the applied field. For cases in which the

polarization functions are of the same symmetry (as is the case for

fields applied parallel to the internuclear axis of a diatomic

molecule) one follows the same prescription. The reason for this is

that if the field-free wavefunction truly represents the Hartree-

Fock limit, the effect of the polarization functions on the energy

and properties for the zero-field case will be minimal.

The manner in which weselected the basis set in this work, was

described earlier (Section C of Chapter III). With respect to

assessing the success of our approach in light of the foregoing

discussion, the following three points are significant:

1. Our zero-order set was essentially a Hartree-Fock limit

set, with orbital exponents optimized (by Kestner) at each

internuclear separation.

2. Any reduction in either the zero-order or polarization set

was made only after it was justified by numerical

experimentation.
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3. The Hartree-Fock limit of the polarizability was obtained

for both the separated and united atom limits, using atomic

extensions of the diatomic prescription.

Based on his own basis set variations, and on the results of

the more elaborate calculations of Gilbert and Wahl, Kestner asserts

that the total energies computed with his wavefunction differ from

the Hartree-Fock limit values by less than one part in 107. To this

extent, one can be confident that the choice of Kestner's wavefunction

is a reasonable one. Although we used the same basis functions for

both the 0g and au occupied orbitals, whereas Kestner used

different ones for each, the effect of this difference is expected

to be small, since the corresponding change in the field-free energy

is on the order of a few parts in 106. This means that as the field

is turned off, we still relax to a function which obtains essentially

the Hartree-Fock limit for the energy.

It, of course, does not follow that any function which yields

the Hartree-Fock limit for the zero-order energy is as good for

second-order property calculations as any other which also yields

this limit. However, additional credence is lent to our results

because our basis goes smoothly into that for the separated atom

limit, for which we obtain the correct coupled Hartree-Fock limit

polarizability.

In comparing our results to those of O'Brien et al.,three points

are especially noteworthy: first, in their calculation, they used
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the same (Gaussian) basis set for all values of the internuclear

separation; second, the difference between the Hartree-Fock limit

for the total energy and their total energy is on the order of a

part in 104; third, they failed to obtain the coupled Hartree-Fock

limit for the polarizability of the helium atom.

The use of a single basis set for all internuclear separations

has the advantage that smoothness is automatically built into the

polarizability curve. For the case in which the single basis is an

atomic set, one thereby introduces the so-called distortion error. 61

Using our basis set, this amounts to an error of about .003 a' in
0

al at R = 6°0 ao 0  This and the use of a Gaussian basis set are

probably the major source of error in the computed, zero-order

potential curve of O'Brien et al.

The most significant difference between our results and theirs

is that they do not obtain the Hartree-Fock limit for the polarizability

at the separated atom limits. In fact, while our values of a(R) are

slightly below theirs, our values of Aa(R) are about the same; this

is because their value of 2ao is greater than the Hartree-Fock

limit by about the same amount that their values of a(R) are

greater than ours.

3We estimate that our results are within about .002 ao of the

Hartree-Fock limit of the polarizability for R values between 4°0 a0

and 5.5 ao , and are within about .001 ao for R values between

5.5 a0 and 6.0 ao . Curves for as which correspond to our error

estimates are given as follows:
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U(R) -14.5exp(-.1.48R) + .0085/R , R < 6.0 a (5.1)

aL(R) = -12.Sexp(-1.45R) - .0127exp(-A462F) , R < 7.0 a (5.2)

For large values of R we use the po4nt dipole result, Eq, (1.37)

and (1,38). These curves are shown as the bcurding curves in Figure

111.1. The corresponding values of the second dielectric virial

coefficient are denoted by BU and BL in Table V.I. In this
table the "U" superscript refers to the result obtained using Eq.

(5tab) while the L"U" superscript refers to the result obtained using Eq.
(5.1) while the "L" superscript refers to the result obtained using

Eq. .5.2). We should emphasize that these bounds are based on "best

guesses" of errors, and are not quantitative. The anisotropy curve

which is of interest for the BK calculations is given in Figure

III.2.

It is apparent from Table V.1 that the magnitude of B depends

markedly on which Aa(R) curve one uses; in fact, the value of BL

at room temperature is seen to be out of the experimental range. It

is equally apparent, however, that the isotopic ordering of the low

temperature results is the same regardless of which Ac(R) curve is

used. Thus, we conclude that basis set error does not account for

the low temperature isotopic discrepancy.
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C. Electron Correlation Effects

This section is not intended to be a general comment on the

effects of electron correlation on molecular polarizabilities, but

rather, it concerns itself with whether or not this effect can

account for the isotopic reversal of our values of the second

dielectric virial coefficient for 3He and 4He relative to experiment.

To get a better feeling for the problem, one can examine

Figure IV., which shows a plot of the g(R) values we obtain for
3He and 4He at 40K, along with that for room temperature helium gas.

Our Aa(R) points are plotted in Figure III.. The isotopic differences

between the g(R) curves at this temperature is due to mass effects:

that is, the larger mass of 4He results in an increase of 4He density

over the well, while the smaller mass of 3He allows it to tunnel

further into the barrier than 4He. The order of the B values

which results is then a resolution of the question whether or not

the slightly greater penetration into the barrier by 3He to regions

of more negative Aa(R) can overcome the significant increase in
4He density over the well.

In order to effect the reversal of our results by invoking

correlation effects, one must argue that the effect of correlation is

to "pull up" the Aa(R) curve for internuclear separations over the

well and "pull it down" in the tunneling region. This latter effect

is limited for two reasons: first, Aa(R) is bounded from below

because a(R) must be positive for a molecule in its ground state;
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second, even within the constraint introduced by the above point, a

decrease in the Hartree-Fock Aa(R) curve in the tunneling region

for a broad range of R values will destroy the agreement between

the room temperature experiments and the Hartree-Fock calculation.

Thus, in order to agree with experiment, one would have to require

that the effect of correlation on the incremental polarizability

curve is to make Aa(R) positive over the well, negative and

sharply decreasing in the region where g(3He) > g(4He) , and

negative but increasing in the region where the classical g(R) is

large, and the quantal g(R) curves are small.

The results of earlier chapters indicate that the correlation

contribution to the mean incremental polarizability in the dispersion

region is positive, and is given by:

aCorr(long-range) = (38.98 - 9.24)R -6 a .

Here, 38.98 a9 is the accurate A6 result of Chapter II, and

9.24 a9 is the corresponding point dipole value. If one assumes

that the multipole expansion is valid into R = 6.5 ao , this

results in slight increase in B for 4He relative to 3He.

For separations in the overlap region, the correlation

correction is not known, and any conclusions are therefore

speculative. To obtain an idea of what one is up against in this

region, we denote the exact (correlated) result by a , and the
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Hartree-Fock result by a , a(correlated) by a , Ac(Hartree-

Fock) by a- , and consider the following:

Aa = a(R) - 2a0o ,

A = (R).- 2&0 ,

or,

Aa = Aa - .122a0 + (a(R) - (R)) ,

where we have used the known result, &0 - & = 0.061ao .65 The

sign of Aa in a given range of R is determined by the sign of

the last term on the right-hand side of this equation, since the

first two terms are both negative. Intuitively, one might expect

this term to be negative in the region of the van der Waals well,

corresponding to the greater diffuseness of the Hartree-Fock

wavefunction compared to the correlated function. This is the case

for most atoms and for H2 at its equilibrium separation. However,

definitive statements regarding He2 can be made only by actually

performing the correlated polarizability calculation.

In an attempt to match the isotopic dependence and magnitude of

the experimental data at 4*K and 322 0 K, we adopted several ad hoc

models. These models served to distort the Hartree-Fock Aa(R)
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curve in a manner which s cnr ent w';Vth the ideas o'cussed

earlier in this section. The r t V.(R, curve 'equ-red a

maximum of .10 a: in the if , f the , and a m:nmum of about

-.30 a3 in the tunnelng eg on Whie this general shape is not

implausible, the actual nv.bets nvc',,ec, ecue that the ccrelation

correction to the mean hrementa' pc'a ?abilty be an order of

magnitude larger than IP-art .ee-Fock)

The effect of correlation of the mean incrementa) polarizability

on the properties other than B 1,sted in Table V.1, 7s minimal,

so that no insight as to its magnotude can be infe-ed from those

experiments.

D. Summary and Corclus.or

The largest part of the d-(.s cr ras dealt with the dielectric

constant experiments, as th:s is the only plate where a conflict

between the present work and experiment has appeared To summarize

our dielectric constant esults, we see that we get good agreement

between our computed results and those of the room temperature

measurements, and order of magn tude agreement with the low temperature

experiments, but with -eversed isotop'c dependenze. Ad hoc

modification of the incremental mean polarizability curve within what

we take to be reasonable imits does not reverse this result. Our

estimates of the other properties which we considered all agree with

experiment where such experiments have been performed; agreement with
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other calculations of the high temperature properties is also good,

although the corresponding polarizability curves are somewhat

different. In this respect, we believe our calculations represent

the Hartree-Fock limit more closely than the others do.

Further, it is our opinion that the disagreement with experiment

is a consequence of using too small error assignments in the difficult

experiments. This reflects on the analysis of the experiment in two

ways: first, in the region of low densities where the virial

expansion is certainly valid, the data exhibits a large amount of

scatter, so as to render these points relatively useless as data in

a linear least-squares fit. On the other hand, in the region in

which the scatter is smallest the number densities are quite high.

At these densities, a two-term virial expansion of the equation-of-

state is known to be a poor approximation. Thus the density

coefficient quoted by Kerr and Sherman may be an average slope, as

distinct from the initial slope which defines B . Neither of
S

these problems appear in the room temperature data of Orcutt and

Cole.

Our results indicate that a priori calculations of the molecular

properties of helium can now make meaningful contributions to the

interpretation of experimental data, and we believe that renewed

experimental and computational efforts on the dielectric properties

of helium is very desireable. In this connection, additional

calculations on X-ray structure factors for liquid helium; third
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pressure virial coefficients for the gas, and Raman scattering line

shapes are presently being carried out in this laboratory.



APPENDIX A

SYMMETRY REDUCTION PROCEDURE USED

IN THE LONG-RANGE CALCULATION

The reduction of Eq. (2.32) to (2.48) is long but

straightforward. We shall illustrate the technique for a simple

example, and then present a table of results. Consider the single-

center matrix element,

I = <PohIm 11-mIo> , (A.l)

where P±m -Y 1,±m I and Ykm represents the usual spherical

harmonic. In this work, we used the phase convention,

Y = (-1)m
Y1,m : (- Y *

The intent of the symmetry reduction is to relate the matrix

elements of the form (A.1) which have m 0 to those which have

m = 0 , so that Eq. (2.32) can be simplified. To effect this, it is

natural to make use of the Wigner-Eckart theorem.4 s This theorem

states that, in a standard representation {J2 ,J z} , whose basis

functions are denoted by IT,J,M> , the matrix element

<TJMIT(K)IT'J'M'> of the q-th standard component of the k-th

135
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order irreducible tensor operator, T(K) , is equal to the product

of a Clebsch-Gordon coefficient, <J'KM'qIJM> and a quantity which

is independent of M, M', and q . That is,

<TMIT(K)IT'J'M'> = <JIIT (K) IT'J'><J'KM'qlJM> , (A.2)
q

where the quantity <TJI!T(K)11IeJ'> is known as the reduced matrix

element, and can be evaluated by using a particular value of M for

which the left-hand side of Eq. (A.2) can be easily evaluated directly.

In the following, we ignore the radial part of the functions 1jm

as they are independent of m , so that we take,

< o0Pm i-m fo>  ~ <@oIY1,m Y1,jM4o>  (A.3)

Then,

<0o1Y I  Y 10o >  =. (-I' m  Y l

,m 1 -_ > I', (Ym ,m 1ojY m fo> (A.4)

(-1) m /47 <Y1,m 0o Yo,oY1,m fo> ,

(A.5)

and

< 0 Y1,o Y1io0 o0 > = A4 <Y1,o OlYo,olYiY, o c0 > (A.6)
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Now, since the- 2k+l spherical harmonics Yk,q (q = -k, -k+1, o

k-1, k) considered as operators, are the standard components of an

irreducible tensor operator of order k , T(k) , we can write

Eq. (A.5) as:

(-I) m V <Yl,m¢O o,oYI,m¢O> = (-I) m  - <Y1,m OjTo,oY1,m¢oO>

(A.7)

Further, since €o has S-type symmetry, the right-hand side of this

last equation is of the form of Eq. (A.2), so that we can apply the

Wigner-Eckart formula to Eq. (A.7) for the two cases m = 0,1 :

-1 0 1<Y1,14olTo ol,1 o>  -01 <T,1IHTo~Ij ',1> , (A.8)

and

<Y1,oolTo,oY1,0o 0o> = (-) <r,liTo!IT',l> ,(A.9)
000

where we have replaced the Clebsch-Gordon coefficient of Eq. (A.2)

with the corresponding Wigner 3-j symbol. Thus,

<OIYi,mYi,.-m 1o> = (-1) 44-T <T,ljTolljT',1> , (A.10)
-1 0 1



138

and

1 0
<4 0JY1 ooY 1 ,ofo> (-)v4 - 1 101> (A,11)

but since

1 0 1

0 0J 0/3

and

1 0 1 
/3-1 0 1)

we get:

<¢0[10P04€o - - IoJ -11Wo> - (A.12)

We needed a number of relations such as Eq. (A.12). They are

collected together in Table A. These results can also be obtained

by using explicit relations for the Yem's or by raising-lowering

operator techniques.

Let us now outline the symmetry reduction of Eq. (2.32) for

A6 . First we note two simplifications:

1. The dipole moment operator can be replaced by a , the

dipole operator for atom a , since the cross terms involving a
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and b vanish. The final expression is symmetrized by multiplying

by (1.+ Pab) , where Pab exchanges the labels of a , b .

2. The resolvent ro  is spherically symmetric about each

center, and hence the excited atomic states behave like the

spherical harmonics Y m "

The dipole-dipole interaction operator can be written

S a b _ ab - bV3  = _ _+ -P - + 2 0 110

where o0 = z 11+ = -x i y and P = X - iy . Then one of

the nonzero terms in A6 is

A Aab a a a a1< 0hJV3 ro V3 ro +ro _i> = (l+Pab)<¢oIV3 r b V3 ra + ra Pa0 >

= 1(l+Pab)<oa I b arb pa b r a palr ao> + ....

For the excitations involving atom b , we have

,

< I1-I1l><(Yl1)*YlI> = -<y1_1y1 >2 = _<y10>2

For atom a , the middle resolvent can involve either excited S(Yoo )

or D(Y2m) states. Thus, there are two possibilities:
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<Y IYi-I><Y- YIY-IYoo><YooIl1-'<Y1-1Y1-1>

= (-1)(+1)(-l)(+1)<YloY1o><YloY1oYoo><YooYloYlo><Yioylo>

and

<YuY1-l><Yi-zY1-IY20><Y2oYIYl-l><Yi-iYl-l>

= (-l)(-14)(1/2)(+l)<YloYlo><YloY1oY2o><Y2oY1oYo><Y1oYlo
>

This gives

a b ab a b ra a a alo >

ab a b ra ua ra a
0  0  0 o'0 0 u0 r 0

+ <Qa a ab a b a a a a
+ >%< o p r0 po0 p r0 po ro 0 1o0>D '

where the subscript S and D refer to the symmetry of the excited

states in the middle resolvent.

In the way we have just illustrated, we reduced Eq. (2.32) to

Eq. (2.48), with the coefficients given in Table II.1.
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Table AM. Symmetry reduction of sperical harmonics. The angular

brackets < > denote spherical averages.

<YllY 1 1_> = -<Y >

2r3  2<Yi°YzzYz-1> =- 200

<YIIY1_1Y20 >  12<YIoY20>

<Y21Y2-1> 2



APPENDIX B

DERIVATION OF INTEGRALS REQUIRED IN THE

LONG-RANGE HELIUM CALCULATIONS

The basic reference for integral evaluation for the long-range

calculations is the atomic integral work of Calais and Lowdin. The

general integral for which they derive closed-form expressions is:

(aclbd) = fa(r1)Y*im (01,,)fb(r2)y 2m2 (622)h(r12)

(B.!)
x fc(rl)Y3m3(1,41)fd(r2)Ygmt(0 2,42 )dr, dr2

In reference (51) this integral is reduced to a sum of simpler

integrals of the form:

= fff(r)Y m(ej ,01)h(r12)g(r2)Y (62,4 2 )dr
l dr2 . (B.2)

For our purposes, the functions f,g, and h are of the form r e-" r

We use the following notation,

[kim] = r e-arl drf rk e-br2 dr2 rl+r 2 e-cr12 dr
0 00 |jri-r 21 r r

(B.3)
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where

[0,0,0] 2 (A
(a+b)(a+c)(b+c) ' (B4)

and

ak at am
gaa ab- acm [0,0,0] = [k,k,m] . (8.5)

Thus, knowing the fundamental integral [0,0,0] , one can generate

formulas for the set [k,k,m] by carrying out the differentiations

indicated in Eq. (B.5), and (aclbd) can be computed. The general

expression for the [k,z,m] is given in reference (51).

In the present calculation, construction of the Hamiltonian

matrix requires, in addition to the rm , expressions for the basic

integral:

mn : f(rl)Y (e6,l)ein,1 g(r2)Y (e2,02)h(r12)drj dr2

(B.6)

One purpose of this appendix is to derive a computationally useful

expression for this integral.

Following Calais and L6wdin, we first integrate over 01, 02,

and e1 and express the remainder as an integral over rl, r2 , and

the relative angle, e12 = 02 - e . To accomplish this, we first



144

rotate the coordinate system so that the polar axis for r2  coincides

with , . Denoting the new polar angles as 612  and c12 , we have

that Y (02,2) becomes:

YX(2,42) = I (-1)I-m ei1l dX ,-m(e 1)YAm,(e012,412)m'-11,-mn "n

(B.7)

Here, the factor ei'" d (e1) is an element of the rotation-11,-r'

matrix representing rotation through the Euler angles a = 1 ,

S= el , y = 0 . Using Eq. (B.7) in (8.6), we can integrate over

12 and see that only the m' = 0 term contributes to the above

sum. Thus, since,

Y (e,) [(2t+I) 11 Pm(cose)eimO (B.8)

and

d X (e) = [(x ]12 p (cose) , (B.9)

we get

mpn )m+P X-uQ! 2X+l (2k+1)(£-m)! ,£V L (-I 4x 4w( Z+m)!

x f(rl)g(r2 )h(rl 2)Pkm(cosel)PXm(cosel)PX(cosel2)e,(m+n+P)P1 dr

(B.10)
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where

d = r2 r sine sine dr dr dr de de d
1 2 1 12 1 2 12 1 12 1

Integrating over j yields a factor 6 , so that ymin can
m+p,-n YIX

be written,

Ylmn = (-1)m , f(r)r2 dr1  g(r2 )r2 dr2
0 0

x h(r12 )P,(cosei 2 )sinei 2 de12  (B.11)
0

x (-1), L x-p) (2+l (24+ )(-m)! ]27r I mu)P (u) du

-1

.XP! 4ff 4ff(k+m)! f2 Pkm uP

Comparing this result to Eq. (17) of reference (51), we get

myn , ! 2X+l (2+l)(z-m)! I 1mY [(-) [ 4 (+m)! 2 P (u)P (u) du]
£(A !4rr 4rr2+m)! j m A

x m+n, 1

(B.12)

Hence, mPn can be done by computing 1m-n j via the method of
zX kX

Calais and Lowdin, and modifying it by the above multiplicative

factor. The integrations involving the associated Legendre functions

were done explicitly for the particular PM 's which we required.
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This result, Eq. (B.12), can be duplicated by expanding the

factor ein 1 in terms of spherical harmonics, and using the

addition theorem for spherical harmonics to reduce the result to the

form of rm+n,

As mentioned earlier in this appendix, the integrals of Eq. (8.6)

can be reduced to sums of integrals of the form of Eq. (B.3), with

Eqs. (8.4) and (B.5) forming the basic computational units. For our

purposes, however, we also need the additional integral:

= r -1 ekrl drl  rb ekr2 dr2 ( r12 1

J 0 rl-r 21 (Bd 1 3
(8.13)

for -1 < b < s and 1 < c < t

We proceed by integrating over r12  first, then over r2 , and

finally over r, , using standard expressions for the intermediate

integrals which occur. The final result which is obtained for the

integral I is:

I = II + 12 ,
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where

I: o.c1 f[1(-1)c2(b+c*1)! in2 + 1 [1+(-1)p+
2 cn2 4 p l

(c+1)kb+c+2 - )C1 L 2I+(-) P+ I ]P=1

x +1) _(b (1(c-2__ 1 c+1 b p-1

p=1 q-O

___c+1)! ( (b~c-q)2
p- c+1-p.-b+p-q ! 2b+e-q

(B.14)

For 12 , we have different results depending on whether

b =-1 , or b -1 :

b=- :

+2 b~+12 K cE k-6+( - 1)c+2] n2 1 +-p+1"p=1

(c+1) 1 c+1 p-2
× i p T-) (p-l)! (b*c+1-p)![1 - b c2-] - 1 1' (B.15)

p=1l q=O

x [1+(-1)P+ (c+1-p) p 1 2 ++-q
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b > -1

12 [ -2 ]b!c[1 +(- + p +

E 2b+L o
p=1

(c+l)! _ , c+1 p-2

x p(c+p)(p-)! (b+c+1-p)![1 - 2 p] - ' (Bo16)
p=1 q=O

X [-+(-1)1) (b+-g)!
P!(+IP)Tp'- q-1 b++-qf

Eqs. (Bo12), (B.13), (B.14), (B.15), and (B.16) taken together

with the results of Calais and L6wdin comprise all the necessary

expressions for computing the integrals needed in the long-range

helium calculation.
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THE BISON COMPUTING SYSTEM

BISON is a self-contained FORTRAN computer system for the

calculation of analytic self-consistent-field wavefunctions,

properties, and charge densities for diatomic molecules, using a

basis of Slater type orbitals. BISON was written by A. C. Wahl,

P. J. Bertoncini, K. Kaiser, and R. H. Land of Argonne National

Laboratory and is described in reference (64). In the initial

construction of this package, care was taken to guarantee that the

code would be computationally optimized, modular, machine

transferable, and capable of continuous growth and revision. For

these reasons it is particularly attractive for our purposes.

Before the program could be modified to allow for computation

of diatomic polarizabilities, the standard working version had to be

made operative on the University of Wisconsin UNIVAC 1108. The

version of BISON with which we began, consisted of ten overlays

(independent program segments) which are defined as follows:

main - basic executor, remains core-resident throughout

the computations;

overlay 1 - input driver and data-screening segment;

overlay 2 - compute J-type exchange integrals;

149
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overlay 3 - compute J-type coulomb-hybrid integrals;

overlay 4 - compute K-type exchange integrals;

overlay 5 - compute K-type coulomb-hybrid integrals;

overlay 6 - compute one-electron integrals;

overlay 7 - construct P and Q matrices;

overlay 8 - carry out SCF iterations;

overlay 9 - compute properties;

overlay 10 - contour hunting and drawing.

A description of the notation and definitions of terms can be found

in the BISON manual.

The initial problem was simply enough storage space to store

intermediate results. The data bank (d-bank) size of the above

overlays was on the order 130 thousand machine words (130k) 10 (double

precision version) except for overlays 1, 7, 9, and 10 which were

considerably smaller. The data divided up among several arrays,

with one array of dominant size in the two-electron integral overlays

and several arrays of similar size in the one-electron integral

overlay. In each case, however, the sizes were such that no matter

how the arrays were arranged in core, at least one array would begin

beyond the nominal memory size (65k)10 . This comprised a main

problem in adapting the program to the 1108; because the UNIVAC 1110

series of computers uses a 16-bit address field in its instruction

words, thus the base address of any array must be less than (65k) 10

relative to the beginning of the program. However, special data
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arrangement procedures can be used to extend this limit to (256k)10

This is done by collecting a sufficient number of arrays into a

master array using the FORTRAN V DEFINE procedure, such that the base

address of this master array is less that (65k)10 .79 The words

beyond the (65k)10 boundary are addressed by the operating system

via the base address plus an index offset. This clearly implies

that this master array must be stored as the (physically) last part

of the d-bank for the given overlay. This is accomplished by

declaring the master array to be in labelled COMMON, and manipulating

the position of this COMMON block in core using the EXEC-8 MAP

processor (MAP is the local name for the EXEC-8 COLLECTOR).80

These points are best illustrated by an example from the 1108

version of BISON. Figure (C.1) is a partial listing of the source

code for subroutine SUT, which is the main subroutine in the

one-electron integral overlay. Figure (C,2) is a listing of the

output of the MAP processor for the same overlay.

In Figure (C.l), the COMMON block of interest is EXCORE (a);

since this is a double precision program, the array STRAGE requires

(130,000)10io words. Part (b) of Figure (CA) shows the actual arrays

which are contained in STRAGE, and the manner in which they are

imbedded. The statement which defines the function MM(I,J) is of

additional interest, because it illustrates the procedure used to

imbed a two-dimensional array in a one-dimensional array. The

offsets given in Part (c), are not to be confused with the operating
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Table C.1. Illustration of the Use of the DEFINE Procedure in

BISON.
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SEGMENT SUT* 014070 017740 05761 502377
FOLLOWS SEGMENT MAIN

OFFSET (COMMON BLOCK) 056761 05763

SUTMAT (COMMON BLOCK) 09576 10003 _
SUTPUT (COMMON BLOCK) 00o0Q 100547
SUTDUM (COMMON BLOCK) 100550 100713

$UTDAT (COMMON BLOCK) 100714 102077
SUTCOM (COMMON BLOCK) 102100 103537

SUT 1 Olq070 015662 0 103540O 103770

3 INPUT 2 FLOAT
5 FLAGS 4 PARM
7 SUTDUM 6 SUTDAT - .
9 EXCORE e SUTPUT

11 SUTCOM 10 DIPLM
13 OFFSET 12 SUTMAT

14 IBLCKS
US 015663 016175 0 103771 lOq43

3 SUTDAT 2 FLOAT
5 5UTCOM 4 EXCORE

STOSUT 1 016176 01653S 0 10$14lq 10'175

3 SUTPUT 2 FLOAT
5 SUTCOM 4 EXCORE

6 OFFSET

LEGSUT 1 016536 017354 0 10176 10oq323
3 EXCORE 2 FLOAT

q- OFFSET

ADDSTO 1 017355 017911 0 10324 104335
2 SUTDUM

BLKCTC 0 104336 10336
2 SUTDAT

OPARAM 1 017q12 017660 0 10337 10qq,5
3 DIPLM 2 EXCORE
5 OFFSET 4q SUTCOM

PUTLEG 1 017661 017740 0 104qq36 104457

3 SUTPUT 2 PARM

XCORE (COMMON BLOCK) 104460 502177
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Table C.2. Illustration of the Use of the MAP Processor to

Position Data.
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SUBROUTINE SUT
.IMPLICIT REALos (A-H.O-Z)
REAL*B MM __

REAL GRID
COMMON/FLOAT/FLINi 76) ,FACTL( 57)
COMMON/INPUT/ Z 100) ,NN( 100) ,NL( 100) ,NM( 100) ,NNEU.NSIMP.NXI *NETA*

.NSYM,NBIASUCM,-ONAMDAF1tOV--- 
--

COMMON/PARM/ ZA,ZBRR.RMAX.BETAMMMINMMMAXsLLMINLLMAX, IPNAX.NMAT

COMMON/SUTDAT/GR ID (628)
COMMON/SUTDU"H/* DIJMiIOO) - __

COMMON/SUTPUT/ JPLACE(1oo)___
COmmoN/EXCOkE/S'TRAGE(6500) -__

COMMON/D IPLM/ ID IPL ,FIELDS__
COMMO/SUTOM/GDT( 10) GDWT(2* 100)

COMMON/SUT MAT/ MATE L (100,
COMMON/OFFSET/IOFST1.IOFST2.IOFST3-

,-.COMMON/ IBLCKS/NBLCKS
DEFINE PLMNX(I)=STRAGE(I) ---

DEFINE CHI (I )=STRAGE( I+IOFSTI)_________
DE I NE t I SRGE(+ FT
DEFINE COSCI)uSTRAGE(I.IOFST3) b ______

DEFINE MM(I.J)=STRAGE(J.NROWS-NROWSI+IOFST4)
DEFINE ZVALU(IJ)USTRAGE(J.NRSP-NRSPI.IOFSTS) _

DEFINE XVALU(I)USTRAGE(I+IQFST6)
I OFST la10000 _ __ _________

IOFST2a20000 --.----.- .- - ~ . - __ _ _ _ _ _ _ _ _

I OFST3=25000
I OFST'fu30000
I OFST5=58000 C.
I 0FST6=60000
NROWS=7
NRSPa 1000
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system offset indices mentioned above, which are transparent to the

user. The program offsets (c) are user defined and are equal to the

total number of words in the individual "sub-arrays".

In Figure (C.2), we see that the COMMON BLOCK EXCORE has been

forced to the end of the d-bank of the overlay, SUT; this, in fact,

forces it to the absolute end of the overlay, as the I-bank is stored

first. This positioning is accomplished by placing the card, IN

EXCORE (left-justified in column 1) as the last card in the set

which defines SEGMENT SUT. Note that since EXCORE begins at (64772)8

and ends at (502377)8 (relative addresses), it could not have fit

into the addressable memory in any other way.

Besides the core requirements, BISON uses eleven periferal

files. These may be tape files, disk files, drum files, or any

combination thereof. For production runs, the program was copied

from tape on which the relocatable elements were stored to a

temporary drum file, and collected. The rest of the periferals used,

consisted of an integral save tape, and eight (scratch) drum files.

The logical unit numbers assigned to the scratch files were:

40, 41, 42, 49, 51, 52, 53, 54 .

Of these, all but unit 52 were allotted a maximum of 128 tracks

(1 track = (1,792)10 words); unit 52 required somewhat more, the

actual number depended on the basis set used. LUN 43 was assigned
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to the integral save tape; the 7-channel tape was taken to be of

medium density (556 bpi). We used 7-channel tapes in order to be

compatible with the 1108's 36-bit word structure.

Once the original version of BISON was working, the primary

modifications which were necessary to enable us to compute

polarizabilities took place mainly in the integral overlays. The

original BISON was designed to take advantage of the D h or C Vsymmetry

of diatomic molecules. The symmetry is lowered when an external field

is present in the perpendicular direction, and this required

modifying some of the algorithms of integral evaluation. These

changes consisted of four basic steps:

1. Compute the dipole moment matrix elements in the one-

electron segment. This is equivalent to constructing p.F

for unit field strength. The basic code was extracted from

the properties segment.

2. Modify the two-electron integral overlays to allow for

Slater orbitals of different m-values (including those

with m-values of opposite sign) to be handled in a single

symmetry block. This included insertion of new selection

rules and phase factors. It was also necessary to restrict

the MCYCLE DO-loop parameters of subroutines KEX and KCH

to a single value, as it was no longer necessary to compute

both the K - and K -type integrals separately;
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3. Modify the PQ overlay to take the loss of permutational

symmetry in the two-electron integrals into account;

4. Modify the SCF part of the program to include the dipole

moment terms in the one-electron contributions to the Fock

operator, and to allow for field variation in those terms.

Various and sundry additional changes in other parts of the code were

also necessary, but these will be discussed elsewhere. A description

of the (free-format) input to the polarizability load module is given

in Appendix D.

The final verison of the program which we used, typically

required about 41 minutes of CPU time to compute a value of a or

a1 for a given value of R , with an 18-term basis set, using three

different field strengths. Of the 41 minutes, 39 minutes were spent

in evaluating integrals, with the remainder spent in the SCF

calculation. A significant cost factor was the core usage and I/0

changes, as illustrated in the typical breakdown shown below:

CPIJ time $99.00
10 requests 16.00
10 word transferred 2.50
CORE usage 54.00

Shortly after the computations reported in this thesis were

completed, the University of Wisconsin Academic Computing Center

upgraded their 1108 to an 1110. Although they made the claim that

programs which operated on the 1108 would operate on the 1110 without
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modifications, our initial attempts to run BISON were unsuccessful

due to decreased available core size on the 1110. However, since

the final form of the 1110 operating system was not available, no

attempt was made to re-organize the BISON code to fit into the 1110

core.



APPENDIX D

SAMPLE INPUT FOR BISON POLARIZABILITY LOAD MODULE

A sample of the (format-free) input to the BISON load module

which is used in the polarizability calculations is given on the

Figure D.I. The input, except for the second and third cards, is

identical to that described in the BISON manual, reference (64).

The data which is entered on the second and third cards is now

described.

The ninth (MASSA) and tenth (MASSB) entries on the second card

represent the masses of centers A and B respectively, in atomic

mass units. The eleventh (IDIPL) and fourteenth (NBLCKS) can be

considered together as follows:

IDIPL = 2 , NBLCKS = 1 ; computes the matrix elements of z in

the one-electron part of the program,

for unblocked input.

IDIPL = 2 , NBLCKS / 1 ; computes the matrix elements of x in

the one-electron part, for unblocked

input.

IDIPL = 1 , NBLCKS / 1 ; computes matrix elements of z for

blocked input.

160
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The twelfth entry (FIELDS) is the field strength used in the one-

electron part of the program, to compute the p*F terms. The

thirteenth entry (DEPTOL) is the linear independence tolerance, and

execution is terminated if the smallest eigenvalue of the overlap

matrix is less than this threshold.

The first entry on the third card (NIELD) indicates the number

of field strengths to be employed in the current run, and the next

NFIELD entries on this card are the specific values of the field

strengths which will be used. The field variation is done in the

SCF part of the program, so that the use of the field strengths

given on the third card presupposes that a value of FIELDS 1.0

is used on the second card.
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Table D.I. Sample Input for BISON for Calculation of a for He2 .



HE2 CALCN. OF ALPHA-PERP. AT R=6.0. BASIS OF 18 FNS. 163
6.0 30 50 50 0 0 2.0 2.0 4.0 4.0 1.0 .1r)-6 0
1 .001
14 60 20
0 1 0 7 7 5 6 7 0 0 0 0 0
18 2 2 0
2.0 2.0
1 0 0 1.450
2 0 0 2.641
2 0 0 1.723
2 1 1 1.450
2 1 -1 1.450
3 1 1 1.450
3 1 -1 1.450
3 1 1 1.655
3 1 -1 1.655
1 0 0 -1.450
2 0 0 -2.641
2 0 0 -1.723
2 1 1 -1.450
2 1 -1 -1.450
3 1 1 -1.450
3 1 -1 -1.450
3 1 1 -1.655
3 1 -1 -1.655
-. 9400
.0800
01900

-. 0001
.0001

-.0002
.0002
.0001

-,0001
-.9400
.0800
.1900 ---

-. 0001

.0001
-.0002
.0002
.0001

-.0001
.9700

-.0800
-. 1900
.0001

-,0001
.0003

-,0001
-,0001
.0001

-. 9700
.0800
.1900

-.0001
.0001

-,0003
*0003
.0001

-,0001

END OF RUN



APPENDIX E

CONVERSION FACTORS FOR B AND BK

In our work, we have computed the polarizabilities in units of

a3 (atomic units). The results for the second dielectric virial

coefficient, B , and the second Kerr virial coefficient, BK

however, are reported in units of cm6/mole 2 , and electrostatic

units (esu) respectively (see Table V.1). The conversion factors

which are therefore required are obtained in this appendix.

To convert the units of B , Eq. (1.39) is quite straightforward

We have,

B 3872N2 f dR R2 A(R) g(R) ,
0

where we assume that the integral is computed in atomic units (au),

6which, in this case, means that it has units of a . Using

N 6.022169 x 1023/mole and la0 = .529177 A = .529177 x 10-8 cm,

we have immediately that,

B (cm6/mole 2 ) = .210 B (a 6/mole2) .

The conversion of BK to esu's is also straightforward. To

begin, we recall Eq. (1.45),

164
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8r2 N2
BK 45T dR R2 82 (R) g(R)

and note that, in general, the units of BK are length 9/mole 2-energy.

One esu, then corresponds to taking the cm as the unit of length and

one erg as the unit of energy. Taking k = 1o380622 x 10-16 erg/OK

9and noting that the atomic units of the integral are a , it

immediately follows that BK is obtained in esu's by multiplying

the integral (in atomic units) by the factor:

C = (16.61399/T) x 10- 1 3 cm9/ao-erg-mole 2

The particular values of C for T -* 4"K and 322 0 K are

respectively:

C(40 K) = 4.153497 x 10-13 cm9
a8-erg-mole 2

and

C(3220K) = .0515962 x 10-13 cm9
a -erg-mole 2 *

Throughout our work, the values of the various physical

constants were taken from reference (83).
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